dataset module¶
A generic dataset to store data in memory.
This module implements the concept of dataset which is a key element for machine learning, post-processing, data analysis, …
A Dataset
uses its attribute Dataset.data
to store \(N\) series of data
representing the values of \(p\) multidimensional features
belonging to different groups of features.
This attribute Dataset.data
is a dictionary of 2D numpy arrays,
whose rows are the samples, a.k.a. series, realizations or entries,
and columns are the variables, a.k.a. parameters or features.
The keys of this dictionary are
either the names of the groups of variables
or the names of the variables.
Thus, a Dataset
is not only defined by the raw data stored
but also by the names, the sizes and the groups of the different variables.
A Dataset
can be set
either from a file (Dataset.set_from_file()
)
or from a numpy arrays (Dataset.set_from_array()
),
and can be enriched from a group of variables (Dataset.add_group()
)
or from a single variable (Dataset.add_variable()
).
An AbstractFullCache
or an OptimizationProblem
can also be exported to a Dataset
using AbstractFullCache.export_to_dataset()
and OptimizationProblem.export_to_dataset()
respectively.
From a Dataset
,
we can easily access its length and data,
either as 2D array or as dictionaries indexed by the variables names.
We can get either the whole data,
or the data associated to a group or the data associated to a list of variables.
It is also possible to export the Dataset
to an AbstractFullCache
or a pandas DataFrame.
Classes:
|
A generic class to store data. |
- class gemseo.core.dataset.Dataset(name=None, by_group=True)[source]¶
Bases:
object
A generic class to store data.
- name¶
The name of the dataset.
- Type
str
- sizes¶
The sizes of the variables.
- Type
Dict[str,int]
- dimension¶
The dimensions of the groups of variables.
- Type
Dict[str,int]
- length¶
The length of the dataset.
- Type
int
- strings_encoding¶
The encoding structure, mapping the values of the string variables with integers; the keys are the names of the variables and the values are dictionaries whose keys are the components of the variables and the values are the integer values.
- Type
Dict
- metadata¶
The metadata used to store any kind of information that are not variables, e.g. the mesh associated with a multi-dimensional variable.
- Type
Dict[str,Any]
- Parameters
name (Optional[str]) –
The name of the dataset. If None, use the name of the class.
By default it is set to None.
by_group (bool) –
If True, store the data by group. Otherwise, store them by variables.
By default it is set to True.
- Return type
None
Attributes:
The names of the columns of the dataset.
The sorted names of the groups of variables.
The number of samples.
The number of variables.
The names of the rows.
The sorted names of the variables.
Methods:
add_group
(group, data[, variables, sizes, ...])Add data related to a group.
add_variable
(name, data[, group, cache_as_input])Add data related to a variable.
compare
(value_1, logical_operator, value_2)Compare either a variable and a value or a variable and another variable.
export_to_cache
([inputs, outputs, ...])Export the dataset to a cache.
export_to_dataframe
([copy])Export the dataset to a pandas Dataframe.
find
(comparison)Find the entries for which a comparison is satisfied.
get_all_data
([by_group, as_dict])Get all the data stored in the dataset.
Return the available plot methods.
get_data_by_group
(group[, as_dict])Get the data for a specific group name.
get_data_by_names
(names[, as_dict])Get the data for specific names of variables.
get_group
(variable_name)Get the name of the group that contains a variable.
get_names
(group_name)Get the names of the variables of a group.
get_normalized_dataset
([excluded_variables, ...])Get a normalized copy of the dataset.
is_empty
()Check if the dataset is empty.
is_group
(name)Check if a name is a group name.
is_nan
()Check if an entry contains NaN.
is_variable
(name)Check if a name is a variable name.
n_variables_by_group
(group)The number of variables for a group.
plot
(name[, show, save])Plot the dataset from a
DatasetPlot
.remove
(entries)Remove entries.
set_from_array
(data[, variables, sizes, ...])Set the dataset from an array.
set_from_file
(filename[, variables, sizes, ...])Set the dataset from a file.
set_metadata
(name, value)Set a metadata attribute.
- DEFAULT_GROUP = 'parameters'¶
- DEFAULT_NAMES = {'design_parameters': 'dp', 'functions': 'func', 'inputs': 'in', 'outputs': 'out', 'parameters': 'x'}¶
- DESIGN_GROUP = 'design_parameters'¶
- FUNCTION_GROUP = 'functions'¶
- GRADIENT_GROUP = 'gradients'¶
- HDF5_CACHE = 'HDF5Cache'¶
- INPUT_GROUP = 'inputs'¶
- MEMORY_FULL_CACHE = 'MemoryFullCache'¶
- OUTPUT_GROUP = 'outputs'¶
- PARAMETER_GROUP = 'parameters'¶
- add_group(group, data, variables=None, sizes=None, pattern=None, cache_as_input=True)[source]¶
Add data related to a group.
- Parameters
group (str) – The name of the group of data to be added.
data (numpy.ndarray) – The data to be added.
variables (Optional[List[str]]) –
The names of the variables. If None, use default names based on a pattern.
By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
pattern (Optional[str]) –
The name of the variable to be used as a pattern when variables is None. If None, use the
Dataset.DEFAULT_NAMES
for this group if it exists. Otherwise, use the group name.By default it is set to None.
cache_as_input (bool) –
If True, cache these data as inputs when the cache is exported to a cache.
By default it is set to True.
- Return type
str
- add_variable(name, data, group='parameters', cache_as_input=True)[source]¶
Add data related to a variable.
- Parameters
name (str) – The name of the variable to be stored.
data (numpy.ndarray) – The data to be stored.
group (str) –
The name of the group related to this variable.
By default it is set to parameters.
cache_as_input (bool) –
If True, cache these data as inputs when the cache is exported to a cache.
By default it is set to True.
- Return type
None
- property columns_names¶
The names of the columns of the dataset.
- compare(value_1, logical_operator, value_2, component_1=0, component_2=0)[source]¶
Compare either a variable and a value or a variable and another variable.
- Parameters
value_1 (Union[str, float]) – The first value, either a variable name or a numeric value.
logical_operator (str) – The logical operator, either “==”, “<”, “<=”, “>” or “>=”.
value_2 (Union[str, float]) – The second value, either a variable name or a numeric value.
component_1 (int) –
If value_1 is a variable name, component_1 corresponds to its component used in the comparison.
By default it is set to 0.
component_2 (int) –
If value_2 is a variable name, component_2 corresponds to its component used in the comparison.
By default it is set to 0.
- Returns
Whether the comparison is valid for the different entries.
- Return type
numpy.ndarray
- export_to_cache(inputs=None, outputs=None, cache_type='MemoryFullCache', cache_hdf_file=None, cache_hdf_node_name=None, **options)[source]¶
Export the dataset to a cache.
- Parameters
inputs (Optional[Iterable[str]]) –
The names of the inputs to cache. If None, use all inputs.
By default it is set to None.
outputs (Optional[Iterable[str]]) –
The names of the outputs to cache. If None, use all outputs.
By default it is set to None.
cache_type (str) –
The type of cache to use.
By default it is set to MemoryFullCache.
cache_hdf_file (Optional[str]) –
The name of the HDF file to store the data. Required if the type of the cache is ‘HDF5Cache’.
By default it is set to None.
cache_hdf_node_name (Optional[str]) –
The name of the HDF node to store the discipline. If None, use the name of the dataset.
By default it is set to None.
- Returns
A cache containing the dataset.
- Return type
- export_to_dataframe(copy=True)[source]¶
Export the dataset to a pandas Dataframe.
- Parameters
copy (bool) –
If True, copy data. Otherwise, use reference.
By default it is set to True.
- Returns
A pandas DataFrame containing the dataset.
- Return type
DataFrame
- static find(comparison)[source]¶
Find the entries for which a comparison is satisfied.
This search uses a boolean 1D array whose length is equal to the length of the dataset.
- Parameters
comparison (numpy.ndarray) – A boolean vector whose length is equal to the number of samples.
- Returns
The indices of the entries for which the comparison is satisfied.
- Return type
List[int]
- get_all_data(by_group=True, as_dict=False)[source]¶
Get all the data stored in the dataset.
The data can be returned either as a dictionary indexed by the names of the variables, or as an array concatenating them, accompanied with the names and sizes of the variables.
The data can also classified by groups of variables.
- Parameters
by_group –
If True, sort the data by group.
By default it is set to True.
as_dict –
If True, return the data as a dictionary.
By default it is set to False.
- Returns
All the data stored in the dataset.
- Return type
Union[Dict[str, Union[Dict[str, numpy.ndarray], numpy.ndarray]], Tuple[Union[numpy.ndarray, Dict[str, numpy.ndarray]], List[str], Dict[str, int]]]
- get_data_by_group(group, as_dict=False)[source]¶
Get the data for a specific group name.
- Parameters
group (str) – The name of the group.
as_dict (bool) –
If True, return values as dictionary.
By default it is set to False.
- Returns
The data related to the group.
- Return type
Union[numpy.ndarray, Dict[str, numpy.ndarray]]
- get_data_by_names(names, as_dict=True)[source]¶
Get the data for specific names of variables.
- Parameters
names (Union[str, Iterable[str]]) – The names of the variables.
as_dict (bool) –
If True, return values as dictionary.
By default it is set to True.
- Returns
The data related to the variables.
- Return type
Union[numpy.ndarray, Dict[str, numpy.ndarray]]
- get_group(variable_name)[source]¶
Get the name of the group that contains a variable.
- Parameters
variable_name (str) – The name of the variable.
- Returns
The group to which the variable belongs.
- Return type
str
- get_names(group_name)[source]¶
Get the names of the variables of a group.
- Parameters
group_name (str) – The name of the group.
- Returns
The names of the variables of the group.
- Return type
List[str]
- get_normalized_dataset(excluded_variables=None, excluded_groups=None)[source]¶
Get a normalized copy of the dataset.
- Parameters
excluded_variables (Optional[Sequence[str]]) –
The names of the variables not to be normalized. If None, normalize all the variables.
By default it is set to None.
excluded_groups (Optional[Sequence[str]]) –
The names of the groups not to be normalized. If None, normalize all the groups.
By default it is set to None.
- Returns
A normalized dataset.
- Return type
- property groups¶
The sorted names of the groups of variables.
- is_empty()[source]¶
Check if the dataset is empty.
- Returns
Whether the dataset is empty.
- Return type
bool
- is_group(name)[source]¶
Check if a name is a group name.
- Parameters
name (str) – A name of a group.
- Returns
Whether the name is a group name.
- Return type
bool
- is_nan()[source]¶
Check if an entry contains NaN.
- Returns
Whether any entries is NaN or not.
- Return type
numpy.ndarray
- is_variable(name)[source]¶
Check if a name is a variable name.
- Parameters
name (str) – A name of a variable.
- Returns
Whether the name is a variable name.
- Return type
bool
- property n_samples¶
The number of samples.
- property n_variables¶
The number of variables.
- n_variables_by_group(group)[source]¶
The number of variables for a group.
- Parameters
group (str) – The name of a group.
- Returns
The group dimension.
- Return type
int
- plot(name, show=True, save=False, **options)[source]¶
Plot the dataset from a
DatasetPlot
.See
Dataset.get_available_plots()
- Parameters
name (str) – The name of the post-processing, which is the name of a class inheriting from
DatasetPlot
.show (bool) –
If True, display the figure.
By default it is set to True.
save (bool) –
If True, save the figure.
By default it is set to False.
options – The options for the post-processing.
- Return type
None
- remove(entries)[source]¶
Remove entries.
- Parameters
entries (Union[List[int], numpy.ndarray]) – The entries to be removed, either indices or a boolean 1D array whose length is equal to the length of the dataset and elements to delete are coded True.
- Return type
None
- property row_names¶
The names of the rows.
- set_from_array(data, variables=None, sizes=None, groups=None, default_name=None)[source]¶
Set the dataset from an array.
- Parameters
data (numpy.ndarray) – The data to be stored.
variables (Optional[List[str]]) –
The names of the variables. If None, use one default name per column of the array based on the pattern ‘default_name’.
By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
groups (Optional[Dict[str, str]]) –
The groups of the variables. If None, use
Dataset.DEFAULT_GROUP
for all the variables.By default it is set to None.
default_name (Optional[str]) –
The name of the variable to be used as a pattern when variables is None. If None, use the
Dataset.DEFAULT_NAMES
for this group if it exists. Otherwise, use the group name.By default it is set to None.
- Return type
None
- set_from_file(filename, variables=None, sizes=None, groups=None, delimiter=',', header=True)[source]¶
Set the dataset from a file.
- Parameters
filename (str) – The name of the file containing the data.
variables (Optional[List[str]]) –
The names of the variables. If None and header is True, read the names from the first line of the file. If None and header is False, use default names based on the patterns the
Dataset.DEFAULT_NAMES
associated with the different groups.By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
groups (Optional[Dict[str, str]]) –
The groups of the variables. If None, use
Dataset.DEFAULT_GROUP
for all the variables.By default it is set to None.
delimiter (str) –
The field delimiter.
By default it is set to ,.
header (bool) –
If True, read the names of the variables on the first line of the file.
By default it is set to True.
- Return type
None
- set_metadata(name, value)[source]¶
Set a metadata attribute.
- Parameters
name (str) – The name of the metadata attribute.
value (Any) – The value of the metadata attribute.
- Return type
None
- property variables¶
The sorted names of the variables.