# Polynomial regression¶

We want to approximate a discipline with two inputs and two outputs:

• $$y_1=1+2x_1+3x_2$$

• $$y_2=-1-2x_1-3x_2$$

over the unit hypercube $$[0,1]\times[0,1]$$.

from gemseo.api import configure_logger
from gemseo.api import create_design_space
from gemseo.api import create_discipline
from gemseo.api import create_scenario
from gemseo.mlearning.api import create_regression_model
from numpy import array

configure_logger()


Out:

<RootLogger root (INFO)>


## Create the discipline to learn¶

We can implement this analytic discipline by means of the AnalyticDiscipline class.

expressions = {
"y_1": "1 + 2*x_1 + 3*x_2 + x_1**2",
"y_2": "-1 - 2*x_1 + x_1*x_2 - 3*x_2**2",
}
discipline = create_discipline(
"AnalyticDiscipline", name="func", expressions=expressions
)


## Create the input sampling space¶

We create the input sampling space by adding the variables one by one.

design_space = create_design_space()


## Create the learning set¶

We can build a learning set by means of a DOEScenario with a full factorial design of experiments. The number of samples can be equal to 9 for example.

scenario = create_scenario(
[discipline], "DisciplinaryOpt", "y_1", design_space, scenario_type="DOE"
)
scenario.execute({"algo": "fullfact", "n_samples": 9})


Out:

    INFO - 10:06:52:
INFO - 10:06:52: *** Start DOEScenario execution ***
INFO - 10:06:52: DOEScenario
INFO - 10:06:52:    Disciplines: func
INFO - 10:06:52:    MDO formulation: DisciplinaryOpt
INFO - 10:06:52: Optimization problem:
INFO - 10:06:52:    minimize y_1(x_1, x_2)
INFO - 10:06:52:    with respect to x_1, x_2
INFO - 10:06:52:    over the design space:
INFO - 10:06:52:    +------+-------------+-------+-------------+-------+
INFO - 10:06:52:    | name | lower_bound | value | upper_bound | type  |
INFO - 10:06:52:    +------+-------------+-------+-------------+-------+
INFO - 10:06:52:    | x_1  |      0      |  None |      1      | float |
INFO - 10:06:52:    | x_2  |      0      |  None |      1      | float |
INFO - 10:06:52:    +------+-------------+-------+-------------+-------+
INFO - 10:06:52: Solving optimization problem with algorithm fullfact:
INFO - 10:06:52: Full factorial design required. Number of samples along each direction for a design vector of size 2 with 9 samples: 3
INFO - 10:06:52: Final number of samples for DOE = 9 vs 9 requested
INFO - 10:06:52: ...   0%|          | 0/9 [00:00<?, ?it]
INFO - 10:06:52: ... 100%|██████████| 9/9 [00:00<00:00, 1431.77 it/sec, obj=7]
INFO - 10:06:52: Optimization result:
INFO - 10:06:52:    Optimizer info:
INFO - 10:06:52:       Status: None
INFO - 10:06:52:       Message: None
INFO - 10:06:52:       Number of calls to the objective function by the optimizer: 9
INFO - 10:06:52:    Solution:
INFO - 10:06:52:       Objective: 1.0
INFO - 10:06:52:       Design space:
INFO - 10:06:52:       +------+-------------+-------+-------------+-------+
INFO - 10:06:52:       | name | lower_bound | value | upper_bound | type  |
INFO - 10:06:52:       +------+-------------+-------+-------------+-------+
INFO - 10:06:52:       | x_1  |      0      |   0   |      1      | float |
INFO - 10:06:52:       | x_2  |      0      |   0   |      1      | float |
INFO - 10:06:52:       +------+-------------+-------+-------------+-------+
INFO - 10:06:52: *** End DOEScenario execution (time: 0:00:00.014775) ***

{'eval_jac': False, 'algo': 'fullfact', 'n_samples': 9}


## Create the regression model¶

Then, we build the linear regression model from the database and displays this model.

dataset = scenario.export_to_dataset(opt_naming=False)
model = create_regression_model(
"PolynomialRegressor", data=dataset, degree=2, transformer=None
)
model.learn()
print(model)


Out:

PolynomialRegressor(degree=2, fit_intercept=True, l2_penalty_ratio=1.0, penalty_level=0.0)
based on the scikit-learn library
built from 9 learning samples


## Predict output¶

Once it is built, we can use it for prediction.

input_value = {"x_1": array([1.0]), "x_2": array([2.0])}
output_value = model.predict(input_value)
print(output_value)


Out:

{'y_1': array([10.])}


## Predict Jacobian¶

We can also use it to predict the jacobian of the discipline.

jacobian_value = model.predict_jacobian(input_value)
print(jacobian_value)


Out:

/home/docs/checkouts/readthedocs.org/user_builds/gemseo/envs/4.0.1/lib/python3.9/site-packages/sklearn/utils/deprecation.py:103: FutureWarning: The attribute n_input_features_ was deprecated in version 1.0 and will be removed in 1.2.
warnings.warn(msg, category=FutureWarning)
{'y_1': {'x_1': array([[4.]]), 'x_2': array([[3.]])}}


## Get intercept¶

In addition, it is possible to access the intercept of the model, either directly or by means of a method returning either a dictionary (default option) or an array.

print(model.intercept)
print(model.get_intercept())


Out:

[1.]
{'y_1': [1.0]}


## Get coefficients¶

In addition, it is possible to access the coefficients of the model, either directly or by means of a method returning either a dictionary (default option) or an array.

print(model.coefficients)


Out:

[[ 2.00000000e+00  3.00000000e+00  1.00000000e+00 -6.22449391e-16
-5.07973866e-16]]


Total running time of the script: ( 0 minutes 0.052 seconds)

Gallery generated by Sphinx-Gallery