Note
Click here to download the full example code
Multistart optimization¶
Runs simple optimization problem with multiple starting points
Nests a MDOScenario
in a DOEScenario
using a MDOScenarioAdapter
.
from gemseo.api import configure_logger
from gemseo.api import create_design_space
from gemseo.api import create_discipline
from gemseo.api import create_scenario
from gemseo.disciplines.scenario_adapter import MDOScenarioAdapter
from matplotlib import pyplot as plt
configure_logger()
Out:
<RootLogger root (INFO)>
Create the disciplines¶
objective = create_discipline("AnalyticDiscipline", expressions={"obj": "x**3-x+1"})
constraint = create_discipline(
"AnalyticDiscipline", expressions={"cstr": "x**2+obj**2-1.5"}
)
Create the design space¶
design_space = create_design_space()
design_space.add_variable("x", 1, l_b=-1.5, u_b=1.5, value=1.5)
Create the MDO scenario¶
scenario = create_scenario(
[objective, constraint],
formulation="DisciplinaryOpt",
objective_name="obj",
design_space=design_space,
)
scenario.default_inputs = {"algo": "SLSQP", "max_iter": 10}
scenario.add_constraint("cstr", "ineq")
Create the scenario adapter¶
dv_names = scenario.formulation.opt_problem.design_space.variables_names
adapter = MDOScenarioAdapter(
scenario, dv_names, ["obj", "cstr"], set_x0_before_opt=True
)
Create the DOE scenario¶
scenario_doe = create_scenario(
adapter,
formulation="DisciplinaryOpt",
objective_name="obj",
design_space=design_space,
scenario_type="DOE",
)
scenario_doe.add_constraint("cstr", "ineq")
run_inputs = {"n_samples": 10, "algo": "fullfact"}
scenario_doe.execute(run_inputs)
Out:
INFO - 10:06:01:
INFO - 10:06:01: *** Start DOEScenario execution ***
INFO - 10:06:01: DOEScenario
INFO - 10:06:01: Disciplines: MDOScenario_adapter
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 1.5 | 1.5 | float |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm fullfact:
INFO - 10:06:01: Full factorial design required. Number of samples along each direction for a design vector of size 1 with 10 samples: 10
INFO - 10:06:01: Final number of samples for DOE = 10 vs 10 requested
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -1.5 | 1.5 | float |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
WARNING - 10:06:01: Optimization found no feasible point ! The least infeasible point is selected.
INFO - 10:06:01: ... 100%|██████████| 10/10 [00:00<00:00, 380.12 it/sec, obj=1.25]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 12
INFO - 10:06:01: Solution:
WARNING - 10:06:01: The solution is not feasible.
INFO - 10:06:01: Objective: 0.2888129873625884
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = 0.1513713660745195
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -1.252181466244097 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.033808) ***
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -1.166666666666667 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
WARNING - 10:06:01: Optimization found no feasible point ! The least infeasible point is selected.
INFO - 10:06:01: ... 100%|██████████| 10/10 [00:00<00:00, 465.80 it/sec, obj=0.288]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 12
INFO - 10:06:01: Solution:
WARNING - 10:06:01: The solution is not feasible.
INFO - 10:06:01: Objective: 0.28811314244670916
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = 0.15144075010172386
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -1.252370379421043 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.024710) ***
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+---------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+---------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -0.8333333333333334 | 1.5 | float |
INFO - 10:06:01: +------+-------------+---------------------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
WARNING - 10:06:01: Optimization found no feasible point ! The least infeasible point is selected.
INFO - 10:06:01: ... 100%|██████████| 10/10 [00:00<00:00, 482.29 it/sec, obj=-.875]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 12
INFO - 10:06:01: Solution:
WARNING - 10:06:01: The solution is not feasible.
INFO - 10:06:01: Objective: 0.5837798748832244
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = 0.19806414473664136
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -1.165017254128868 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.023973) ***
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -0.5 | 1.5 | float |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
INFO - 10:06:01: ... 100%|██████████| 10/10 [00:00<00:00, 394.16 it/sec, obj=0.615]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 13
INFO - 10:06:01: Solution:
INFO - 10:06:01: The solution is feasible.
INFO - 10:06:01: Objective: 0.6150998219543254
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = -0.788285881879476
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 0.5773788419679762 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.028733) ***
INFO - 10:06:01: ... 40%|████ | 4/10 [00:00<00:00, 82.69 it/sec]
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+---------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+---------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -0.1666666666666667 | 1.5 | float |
INFO - 10:06:01: +------+-------------+---------------------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
INFO - 10:06:01: ... 100%|██████████| 10/10 [00:00<00:00, 380.04 it/sec, obj=0.615]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 12
INFO - 10:06:01: Solution:
INFO - 10:06:01: The solution is feasible.
INFO - 10:06:01: Objective: 0.6150998205402495
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = -0.7883188793606977
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 0.5773502675245377 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.029677) ***
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 0.1666666666666667 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
INFO - 10:06:01: ... 90%|█████████ | 9/10 [00:00<00:00, 441.09 it/sec, obj=0.615]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Successive iterates of the objective function are closer than ftol_rel or ftol_abs. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 10
INFO - 10:06:01: Solution:
INFO - 10:06:01: The solution is feasible.
INFO - 10:06:01: Objective: 0.6150998205402508
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = -0.7883189092934597
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 0.5773502416020033 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.026057) ***
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 0.5 | 1.5 | float |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
INFO - 10:06:01: ... 70%|███████ | 7/10 [00:00<00:00, 567.14 it/sec, obj=0.615]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Successive iterates of the objective function are closer than ftol_rel or ftol_abs. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 8
INFO - 10:06:01: Solution:
INFO - 10:06:01: The solution is feasible.
INFO - 10:06:01: Objective: 0.6150998205402526
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = -0.7883188285028959
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 0.5773503115686811 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.021079) ***
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 0.8333333333333335 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
INFO - 10:06:01: ... 100%|██████████| 10/10 [00:00<00:00, 466.35 it/sec, obj=0.288]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 12
INFO - 10:06:01: Solution:
INFO - 10:06:01: The solution is feasible.
INFO - 10:06:01: Objective: 0.7453703703703706
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = -0.2499785665294918
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 0.8333333333333335 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.024785) ***
INFO - 10:06:01: ... 80%|████████ | 8/10 [00:00<00:00, 43.61 it/sec]
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+-------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+-------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 1.166666666666667 | 1.5 | float |
INFO - 10:06:01: +------+-------------+-------------------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
WARNING - 10:06:01: Optimization found no feasible point ! The least infeasible point is selected.
INFO - 10:06:01: ... 100%|██████████| 10/10 [00:00<00:00, 469.52 it/sec, obj=0.288]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 12
INFO - 10:06:01: Solution:
WARNING - 10:06:01: The solution is not feasible.
INFO - 10:06:01: Objective: 0.28811314244698893
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = 0.1514407501016959
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -1.252370379420967 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.024428) ***
INFO - 10:06:01:
INFO - 10:06:01: *** Start MDOScenario execution ***
INFO - 10:06:01: MDOScenario
INFO - 10:06:01: Disciplines: AnalyticDiscipline AnalyticDiscipline
INFO - 10:06:01: MDO formulation: DisciplinaryOpt
INFO - 10:06:01: Optimization problem:
INFO - 10:06:01: minimize obj(x)
INFO - 10:06:01: with respect to x
INFO - 10:06:01: subject to constraints:
INFO - 10:06:01: cstr(x) <= 0.0
INFO - 10:06:01: over the design space:
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | 1.5 | 1.5 | float |
INFO - 10:06:01: +------+-------------+-------+-------------+-------+
INFO - 10:06:01: Solving optimization problem with algorithm SLSQP:
INFO - 10:06:01: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 10:06:01:
WARNING - 10:06:01: Optimization found no feasible point ! The least infeasible point is selected.
INFO - 10:06:01: ... 100%|██████████| 10/10 [00:00<00:00, 465.32 it/sec, obj=0.288]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 12
INFO - 10:06:01: Solution:
WARNING - 10:06:01: The solution is not feasible.
INFO - 10:06:01: Objective: 0.28811314244587316
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = 0.15144075010180735
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -1.252370379421268 | 1.5 | float |
INFO - 10:06:01: +------+-------------+--------------------+-------------+-------+
INFO - 10:06:01: *** End MDOScenario execution (time: 0:00:00.024974) ***
INFO - 10:06:01: ... 100%|██████████| 10/10 [00:00<00:00, 35.54 it/sec]
INFO - 10:06:01: Optimization result:
INFO - 10:06:01: Optimizer info:
INFO - 10:06:01: Status: None
INFO - 10:06:01: Message: None
INFO - 10:06:01: Number of calls to the objective function by the optimizer: 10
INFO - 10:06:01: Solution:
INFO - 10:06:01: The solution is feasible.
INFO - 10:06:01: Objective: 0.6150998205402495
INFO - 10:06:01: Standardized constraints:
INFO - 10:06:01: cstr = -0.7883188793606977
INFO - 10:06:01: Design space:
INFO - 10:06:01: +------+-------------+---------------------+-------------+-------+
INFO - 10:06:01: | name | lower_bound | value | upper_bound | type |
INFO - 10:06:01: +------+-------------+---------------------+-------------+-------+
INFO - 10:06:01: | x | -1.5 | -0.1666666666666667 | 1.5 | float |
INFO - 10:06:01: +------+-------------+---------------------+-------------+-------+
INFO - 10:06:01: *** End DOEScenario execution (time: 0:00:00.289928) ***
{'eval_jac': False, 'algo': 'fullfact', 'n_samples': 10}
Plot the optimum objective for different x0¶
scenario_doe.post_process(
"BasicHistory", variable_names=["obj"], save=False, show=False
)
# Workaround for HTML rendering, instead of ``show=True``
plt.show()

Total running time of the script: ( 0 minutes 0.472 seconds)