Note
Go to the end to download the full example code
Parametric scalable MDO problem - MDF¶
We define
a ScalableProblem
with a shared design variable of size 1
and 2 strongly coupled disciplines.
The first one has a local design variable of size 1
and a coupling variable of size 2
while the second one has a local design variable of size 3
and a coupling variable of size 4.
We would like to solve this MDO problem by means of an MDF formulation.
from __future__ import annotations
from gemseo import configure_logger
from gemseo import execute_algo
from gemseo import execute_post
from gemseo import generate_n2_plot
from gemseo.problems.scalable.parametric.core.scalable_discipline_settings import (
ScalableDisciplineSettings,
)
from gemseo.problems.scalable.parametric.scalable_problem import ScalableProblem
configure_logger()
<RootLogger root (INFO)>
Instantiation of the scalable problem¶
problem = ScalableProblem(
[ScalableDisciplineSettings(1, 2), ScalableDisciplineSettings(3, 4)], 1
)
Display the coupling structure¶
generate_n2_plot(problem.disciplines, save=False, show=True)

Solve the MDO using an MDF formulation¶
scenario = problem.create_scenario()
scenario.execute({"algo": "NLOPT_SLSQP", "max_iter": 100})
INFO - 08:37:39:
INFO - 08:37:39: *** Start MDOScenario execution ***
INFO - 08:37:39: MDOScenario
INFO - 08:37:39: Disciplines: MainDiscipline ScalableDiscipline[1] ScalableDiscipline[2]
INFO - 08:37:39: MDO formulation: MDF
INFO - 08:37:39: Optimization problem:
INFO - 08:37:39: minimize f(x_0, x_1, x_2)
INFO - 08:37:39: with respect to x_0, x_1, x_2
INFO - 08:37:39: subject to constraints:
INFO - 08:37:39: c_1(x_0, x_1, x_2) <= 0.0
INFO - 08:37:39: c_2(x_0, x_1, x_2) <= 0.0
INFO - 08:37:39: over the design space:
INFO - 08:37:39: | Parameter space |
INFO - 08:37:39: +------+-------------+-------+-------------+-------+----------------------+
INFO - 08:37:39: | name | lower_bound | value | upper_bound | type | Initial distribution |
INFO - 08:37:39: +------+-------------+-------+-------------+-------+----------------------+
INFO - 08:37:39: | x_0 | 0 | 0.5 | 1 | float | |
INFO - 08:37:39: | x_1 | 0 | 0.5 | 1 | float | |
INFO - 08:37:39: | x_2 | 0 | 0.5 | 1 | float | |
INFO - 08:37:39: | x_2 | 0 | 0.5 | 1 | float | |
INFO - 08:37:39: | x_2 | 0 | 0.5 | 1 | float | |
INFO - 08:37:39: +------+-------------+-------+-------------+-------+----------------------+
INFO - 08:37:39: Solving optimization problem with algorithm NLOPT_SLSQP:
INFO - 08:37:39: ... 0%| | 0/100 [00:00<?, ?it]
INFO - 08:37:39: ... 1%| | 1/100 [00:00<00:04, 22.38 it/sec, obj=1]
INFO - 08:37:39: ... 2%|▏ | 2/100 [00:00<00:08, 10.94 it/sec, obj=0.921]
INFO - 08:37:39: ... 3%|▎ | 3/100 [00:00<00:05, 16.37 it/sec, obj=0.513]
INFO - 08:37:39: ... 4%|▍ | 4/100 [00:00<00:08, 11.17 it/sec, obj=0.438]
INFO - 08:37:39: ... 5%|▌ | 5/100 [00:00<00:08, 11.74 it/sec, obj=0.418]
INFO - 08:37:39: ... 6%|▌ | 6/100 [00:00<00:07, 12.16 it/sec, obj=0.416]
INFO - 08:37:39: ... 7%|▋ | 7/100 [00:00<00:07, 12.48 it/sec, obj=0.415]
INFO - 08:37:39: ... 8%|▊ | 8/100 [00:00<00:07, 12.75 it/sec, obj=0.415]
INFO - 08:37:39: ... 9%|▉ | 9/100 [00:00<00:07, 12.99 it/sec, obj=0.415]
INFO - 08:37:39: ... 10%|█ | 10/100 [00:00<00:06, 13.19 it/sec, obj=0.415]
INFO - 08:37:39: ... 11%|█ | 11/100 [00:00<00:06, 13.36 it/sec, obj=0.415]
INFO - 08:37:39: ... 12%|█▏ | 12/100 [00:00<00:06, 14.15 it/sec, obj=0.415]
INFO - 08:37:39: ... 13%|█▎ | 13/100 [00:00<00:05, 15.33 it/sec, obj=0.415]
INFO - 08:37:39: Optimization result:
INFO - 08:37:39: Optimizer info:
INFO - 08:37:39: Status: None
INFO - 08:37:39: Message: Successive iterates of the objective function are closer than ftol_rel or ftol_abs. GEMSEO Stopped the driver
INFO - 08:37:39: Number of calls to the objective function by the optimizer: 15
INFO - 08:37:39: Solution:
INFO - 08:37:39: The solution is feasible.
INFO - 08:37:39: Objective: 0.4147215357836146
INFO - 08:37:39: Standardized constraints:
INFO - 08:37:39: c_1 = [-0.32430628 -0.43254422]
INFO - 08:37:39: c_2 = [ 9.31144051e-13 -2.51296986e-01 -2.35380042e-01 -4.99967955e-01]
INFO - 08:37:39: +---------------------------------------------------------------------------------------+
INFO - 08:37:39: | Parameter space |
INFO - 08:37:39: +------+-------------+---------------------+-------------+-------+----------------------+
INFO - 08:37:39: | name | lower_bound | value | upper_bound | type | Initial distribution |
INFO - 08:37:39: +------+-------------+---------------------+-------------+-------+----------------------+
INFO - 08:37:39: | x_0 | 0 | 0.4836327506555587 | 1 | float | |
INFO - 08:37:39: | x_1 | 0 | 1 | 1 | float | |
INFO - 08:37:39: | x_2 | 0 | 0.08671670660039867 | 1 | float | |
INFO - 08:37:39: | x_2 | 0 | 0.9085357960727601 | 1 | float | |
INFO - 08:37:39: | x_2 | 0 | 0.2480176667988829 | 1 | float | |
INFO - 08:37:39: +------+-------------+---------------------+-------------+-------+----------------------+
INFO - 08:37:39: *** End MDOScenario execution (time: 0:00:00.865961) ***
{'max_iter': 100, 'algo': 'NLOPT_SLSQP'}
Post-process the results¶
scenario.post_process("OptHistoryView", save=False, show=True)
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/envs/5.0.1/lib/python3.9/site-packages/genson/schema/strategies/base.py:42: UserWarning: Schema incompatible. Keyword 'description' has conflicting values ('The width and height of the figure in inches, e.g. ``(w, h)``.\nIf ``None``, use the :attr:`.OptPostProcessor.DEFAULT_FIG_SIZE`\nof the post-processor.' vs. 'The width and height of the figure in inches, e.g. `(w, h)`.\nIf ``None``, use the :attr:`.OptPostProcessor.DEFAULT_FIG_SIZE`\nof the post-processor.'). Using 'The width and height of the figure in inches, e.g. ``(w, h)``.\nIf ``None``, use the :attr:`.OptPostProcessor.DEFAULT_FIG_SIZE`\nof the post-processor.'
warn(('Schema incompatible. Keyword {0!r} has conflicting '
<gemseo.post.opt_history_view.OptHistoryView object at 0x7f873a933460>
Solve the associated quadratic programming problem¶
problem = problem.create_quadratic_programming_problem()
execute_algo(problem, algo_name="NLOPT_SLSQP", max_iter=100)
INFO - 08:37:41: Optimization problem:
INFO - 08:37:41: minimize f = 0.5x'Qx + c'x + d
INFO - 08:37:41: with respect to x
INFO - 08:37:41: subject to constraints:
INFO - 08:37:41: g: Ax-b <= 0 <= 0.0
INFO - 08:37:41: over the design space:
INFO - 08:37:41: +------+-------------+-------+-------------+-------+
INFO - 08:37:41: | name | lower_bound | value | upper_bound | type |
INFO - 08:37:41: +------+-------------+-------+-------------+-------+
INFO - 08:37:41: | x[0] | 0 | 0.5 | 1 | float |
INFO - 08:37:41: | x[1] | 0 | 0.5 | 1 | float |
INFO - 08:37:41: | x[2] | 0 | 0.5 | 1 | float |
INFO - 08:37:41: | x[3] | 0 | 0.5 | 1 | float |
INFO - 08:37:41: | x[4] | 0 | 0.5 | 1 | float |
INFO - 08:37:41: +------+-------------+-------+-------------+-------+
INFO - 08:37:41: Solving optimization problem with algorithm NLOPT_SLSQP:
INFO - 08:37:41: ... 0%| | 0/100 [00:00<?, ?it]
INFO - 08:37:41: ... 1%| | 1/100 [00:00<00:00, 2280.75 it/sec, obj=1]
INFO - 08:37:41: ... 2%|▏ | 2/100 [00:00<00:00, 581.21 it/sec, obj=0.921]
INFO - 08:37:41: ... 3%|▎ | 3/100 [00:00<00:00, 808.67 it/sec, obj=0.513]
INFO - 08:37:41: ... 4%|▍ | 4/100 [00:00<00:00, 512.34 it/sec, obj=0.438]
INFO - 08:37:41: ... 5%|▌ | 5/100 [00:00<00:00, 517.98 it/sec, obj=0.418]
INFO - 08:37:41: ... 6%|▌ | 6/100 [00:00<00:00, 502.47 it/sec, obj=0.416]
INFO - 08:37:41: ... 7%|▋ | 7/100 [00:00<00:00, 495.53 it/sec, obj=0.415]
INFO - 08:37:41: ... 8%|▊ | 8/100 [00:00<00:00, 502.12 it/sec, obj=0.415]
INFO - 08:37:41: ... 9%|▉ | 9/100 [00:00<00:00, 508.45 it/sec, obj=0.415]
INFO - 08:37:41: ... 10%|█ | 10/100 [00:00<00:00, 513.08 it/sec, obj=0.415]
INFO - 08:37:41: ... 11%|█ | 11/100 [00:00<00:00, 516.03 it/sec, obj=0.415]
INFO - 08:37:41: ... 12%|█▏ | 12/100 [00:00<00:00, 516.06 it/sec, obj=0.415]
INFO - 08:37:41: ... 13%|█▎ | 13/100 [00:00<00:00, 552.98 it/sec, obj=0.415]
INFO - 08:37:41: Optimization result:
INFO - 08:37:41: Optimizer info:
INFO - 08:37:41: Status: None
INFO - 08:37:41: Message: Successive iterates of the objective function are closer than ftol_rel or ftol_abs. GEMSEO Stopped the driver
INFO - 08:37:41: Number of calls to the objective function by the optimizer: 15
INFO - 08:37:41: Solution:
INFO - 08:37:41: The solution is feasible.
INFO - 08:37:41: Objective: 0.414721553468123
INFO - 08:37:41: Standardized constraints:
INFO - 08:37:41: g = [-3.24306238e-01 -4.32544172e-01 -4.44089210e-16 -2.51297007e-01
INFO - 08:37:41: -2.35380057e-01 -4.99968031e-01]
INFO - 08:37:41: Design space:
INFO - 08:37:41: +------+-------------+---------------------+-------------+-------+
INFO - 08:37:41: | name | lower_bound | value | upper_bound | type |
INFO - 08:37:41: +------+-------------+---------------------+-------------+-------+
INFO - 08:37:41: | x[0] | 0 | 0.4836327595359132 | 1 | float |
INFO - 08:37:41: | x[1] | 0 | 0.9999999999999998 | 1 | float |
INFO - 08:37:41: | x[2] | 0 | 0.08671677713547089 | 1 | float |
INFO - 08:37:41: | x[3] | 0 | 0.9085357909356101 | 1 | float |
INFO - 08:37:41: | x[4] | 0 | 0.2480176979962943 | 1 | float |
INFO - 08:37:41: +------+-------------+---------------------+-------------+-------+
Optimization result:
Design variables: [0.48363276 1. 0.08671678 0.90853579 0.2480177 ]
Objective function: 0.414721553468123
Feasible solution: True
Post-process the results¶
execute_post(problem, "OptHistoryView", save=False, show=True)
<gemseo.post.opt_history_view.OptHistoryView object at 0x7f873a9f3190>
Total running time of the script: ( 0 minutes 3.916 seconds)