Analytical test case # 3

In this example, we consider a simple optimization problem to illustrate algorithms interfaces and DOE libraries integration. Integer variables are used

Imports

from __future__ import annotations

from numpy import sum as np_sum

from gemseo import configure_logger
from gemseo import execute_post
from gemseo.algos.design_space import DesignSpace
from gemseo.algos.doe.doe_factory import DOEFactory
from gemseo.algos.opt_problem import OptimizationProblem
from gemseo.core.mdofunctions.mdo_function import MDOFunction

LOGGER = configure_logger()

Define the objective function

We define the objective function \(f(x)=\sum_{i=1}^dx_i\) using an MDOFunction.

objective = MDOFunction(np_sum, name="f", expr="sum(x)")

Define the design space

Then, we define the DesignSpace with GEMSEO.

design_space = DesignSpace()
design_space.add_variable("x", 2, l_b=-5, u_b=5, var_type="integer")

Define the optimization problem

Then, we define the OptimizationProblem with GEMSEO.

problem = OptimizationProblem(design_space)
problem.objective = objective

Solve the optimization problem using a DOE algorithm

We can see this optimization problem as a trade-off and solve it by means of a design of experiments (DOE), e.g. full factorial design

DOEFactory().execute(problem, "fullfact", n_samples=11**2)
INFO - 08:58:34: Optimization problem:
INFO - 08:58:34:    minimize f = sum(x)
INFO - 08:58:34:    with respect to x
INFO - 08:58:34:    over the design space:
INFO - 08:58:34:       +------+-------------+-------+-------------+---------+
INFO - 08:58:34:       | Name | Lower bound | Value | Upper bound | Type    |
INFO - 08:58:34:       +------+-------------+-------+-------------+---------+
INFO - 08:58:34:       | x[0] |      -5     |  None |      5      | integer |
INFO - 08:58:34:       | x[1] |      -5     |  None |      5      | integer |
INFO - 08:58:34:       +------+-------------+-------+-------------+---------+
INFO - 08:58:34: Solving optimization problem with algorithm fullfact:
INFO - 08:58:34:      1%|          | 1/121 [00:00<00:00, 4173.44 it/sec, obj=-10]
INFO - 08:58:34:      2%|▏         | 2/121 [00:00<00:00, 3279.36 it/sec, obj=-9]
INFO - 08:58:34:      2%|▏         | 3/121 [00:00<00:00, 3264.90 it/sec, obj=-8]
INFO - 08:58:34:      3%|▎         | 4/121 [00:00<00:00, 3281.93 it/sec, obj=-7]
INFO - 08:58:34:      4%|▍         | 5/121 [00:00<00:00, 3248.38 it/sec, obj=-6]
INFO - 08:58:34:      5%|▍         | 6/121 [00:00<00:00, 3255.18 it/sec, obj=-5]
INFO - 08:58:34:      6%|▌         | 7/121 [00:00<00:00, 3279.00 it/sec, obj=-4]
INFO - 08:58:34:      7%|▋         | 8/121 [00:00<00:00, 3298.71 it/sec, obj=-3]
INFO - 08:58:34:      7%|▋         | 9/121 [00:00<00:00, 3314.78 it/sec, obj=-2]
INFO - 08:58:34:      8%|▊         | 10/121 [00:00<00:00, 3250.89 it/sec, obj=-1]
INFO - 08:58:34:      9%|▉         | 11/121 [00:00<00:00, 3266.82 it/sec, obj=0]
INFO - 08:58:34:     10%|▉         | 12/121 [00:00<00:00, 3280.43 it/sec, obj=-9]
INFO - 08:58:34:     11%|█         | 13/121 [00:00<00:00, 3295.22 it/sec, obj=-8]
INFO - 08:58:34:     12%|█▏        | 14/121 [00:00<00:00, 3308.00 it/sec, obj=-7]
INFO - 08:58:34:     12%|█▏        | 15/121 [00:00<00:00, 3317.93 it/sec, obj=-6]
INFO - 08:58:34:     13%|█▎        | 16/121 [00:00<00:00, 3327.66 it/sec, obj=-5]
INFO - 08:58:34:     14%|█▍        | 17/121 [00:00<00:00, 3335.82 it/sec, obj=-4]
INFO - 08:58:34:     15%|█▍        | 18/121 [00:00<00:00, 3342.07 it/sec, obj=-3]
INFO - 08:58:34:     16%|█▌        | 19/121 [00:00<00:00, 3333.97 it/sec, obj=-2]
INFO - 08:58:34:     17%|█▋        | 20/121 [00:00<00:00, 3338.48 it/sec, obj=-1]
INFO - 08:58:34:     17%|█▋        | 21/121 [00:00<00:00, 3344.11 it/sec, obj=0]
INFO - 08:58:34:     18%|█▊        | 22/121 [00:00<00:00, 3349.35 it/sec, obj=1]
INFO - 08:58:34:     19%|█▉        | 23/121 [00:00<00:00, 3327.55 it/sec, obj=-8]
INFO - 08:58:34:     20%|█▉        | 24/121 [00:00<00:00, 3322.66 it/sec, obj=-7]
INFO - 08:58:34:     21%|██        | 25/121 [00:00<00:00, 3326.17 it/sec, obj=-6]
INFO - 08:58:34:     21%|██▏       | 26/121 [00:00<00:00, 3331.15 it/sec, obj=-5]
INFO - 08:58:34:     22%|██▏       | 27/121 [00:00<00:00, 3335.58 it/sec, obj=-4]
INFO - 08:58:34:     23%|██▎       | 28/121 [00:00<00:00, 3339.70 it/sec, obj=-3]
INFO - 08:58:34:     24%|██▍       | 29/121 [00:00<00:00, 3344.28 it/sec, obj=-2]
INFO - 08:58:34:     25%|██▍       | 30/121 [00:00<00:00, 3348.03 it/sec, obj=-1]
INFO - 08:58:34:     26%|██▌       | 31/121 [00:00<00:00, 3351.21 it/sec, obj=0]
INFO - 08:58:34:     26%|██▋       | 32/121 [00:00<00:00, 3345.74 it/sec, obj=1]
INFO - 08:58:34:     27%|██▋       | 33/121 [00:00<00:00, 3345.71 it/sec, obj=2]
INFO - 08:58:34:     28%|██▊       | 34/121 [00:00<00:00, 3348.12 it/sec, obj=-7]
INFO - 08:58:34:     29%|██▉       | 35/121 [00:00<00:00, 3350.47 it/sec, obj=-6]
INFO - 08:58:34:     30%|██▉       | 36/121 [00:00<00:00, 3353.13 it/sec, obj=-5]
INFO - 08:58:34:     31%|███       | 37/121 [00:00<00:00, 3341.64 it/sec, obj=-4]
INFO - 08:58:34:     31%|███▏      | 38/121 [00:00<00:00, 3343.13 it/sec, obj=-3]
INFO - 08:58:34:     32%|███▏      | 39/121 [00:00<00:00, 3345.83 it/sec, obj=-2]
INFO - 08:58:34:     33%|███▎      | 40/121 [00:00<00:00, 3348.41 it/sec, obj=-1]
INFO - 08:58:34:     34%|███▍      | 41/121 [00:00<00:00, 3350.93 it/sec, obj=0]
INFO - 08:58:34:     35%|███▍      | 42/121 [00:00<00:00, 3353.85 it/sec, obj=1]
INFO - 08:58:34:     36%|███▌      | 43/121 [00:00<00:00, 3356.01 it/sec, obj=2]
INFO - 08:58:34:     36%|███▋      | 44/121 [00:00<00:00, 3358.31 it/sec, obj=3]
INFO - 08:58:34:     37%|███▋      | 45/121 [00:00<00:00, 3361.06 it/sec, obj=-6]
INFO - 08:58:34:     38%|███▊      | 46/121 [00:00<00:00, 3356.90 it/sec, obj=-5]
INFO - 08:58:34:     39%|███▉      | 47/121 [00:00<00:00, 3358.53 it/sec, obj=-4]
INFO - 08:58:34:     40%|███▉      | 48/121 [00:00<00:00, 3361.21 it/sec, obj=-3]
INFO - 08:58:34:     40%|████      | 49/121 [00:00<00:00, 3364.01 it/sec, obj=-2]
INFO - 08:58:34:     41%|████▏     | 50/121 [00:00<00:00, 3359.42 it/sec, obj=-1]
INFO - 08:58:34:     42%|████▏     | 51/121 [00:00<00:00, 3360.13 it/sec, obj=0]
INFO - 08:58:34:     43%|████▎     | 52/121 [00:00<00:00, 3362.17 it/sec, obj=1]
INFO - 08:58:34:     44%|████▍     | 53/121 [00:00<00:00, 3363.41 it/sec, obj=2]
INFO - 08:58:34:     45%|████▍     | 54/121 [00:00<00:00, 3365.41 it/sec, obj=3]
INFO - 08:58:34:     45%|████▌     | 55/121 [00:00<00:00, 3366.95 it/sec, obj=4]
INFO - 08:58:34:     46%|████▋     | 56/121 [00:00<00:00, 3368.77 it/sec, obj=-5]
INFO - 08:58:34:     47%|████▋     | 57/121 [00:00<00:00, 3370.63 it/sec, obj=-4]
INFO - 08:58:34:     48%|████▊     | 58/121 [00:00<00:00, 3372.94 it/sec, obj=-3]
INFO - 08:58:34:     49%|████▉     | 59/121 [00:00<00:00, 3371.63 it/sec, obj=-2]
INFO - 08:58:34:     50%|████▉     | 60/121 [00:00<00:00, 3372.85 it/sec, obj=-1]
INFO - 08:58:34:     50%|█████     | 61/121 [00:00<00:00, 3374.52 it/sec, obj=0]
INFO - 08:58:34:     51%|█████     | 62/121 [00:00<00:00, 3348.92 it/sec, obj=1]
INFO - 08:58:34:     52%|█████▏    | 63/121 [00:00<00:00, 3310.13 it/sec, obj=2]
INFO - 08:58:34:     53%|█████▎    | 64/121 [00:00<00:00, 3296.23 it/sec, obj=3]
INFO - 08:58:34:     54%|█████▎    | 65/121 [00:00<00:00, 3295.30 it/sec, obj=4]
INFO - 08:58:34:     55%|█████▍    | 66/121 [00:00<00:00, 3295.92 it/sec, obj=5]
INFO - 08:58:34:     55%|█████▌    | 67/121 [00:00<00:00, 3296.91 it/sec, obj=-4]
INFO - 08:58:34:     56%|█████▌    | 68/121 [00:00<00:00, 3298.82 it/sec, obj=-3]
INFO - 08:58:34:     57%|█████▋    | 69/121 [00:00<00:00, 3301.06 it/sec, obj=-2]
INFO - 08:58:34:     58%|█████▊    | 70/121 [00:00<00:00, 3303.23 it/sec, obj=-1]
INFO - 08:58:34:     59%|█████▊    | 71/121 [00:00<00:00, 3302.20 it/sec, obj=0]
INFO - 08:58:34:     60%|█████▉    | 72/121 [00:00<00:00, 3303.00 it/sec, obj=1]
INFO - 08:58:34:     60%|██████    | 73/121 [00:00<00:00, 3305.06 it/sec, obj=2]
INFO - 08:58:34:     61%|██████    | 74/121 [00:00<00:00, 3307.56 it/sec, obj=3]
INFO - 08:58:34:     62%|██████▏   | 75/121 [00:00<00:00, 3309.27 it/sec, obj=4]
INFO - 08:58:34:     63%|██████▎   | 76/121 [00:00<00:00, 3304.14 it/sec, obj=5]
INFO - 08:58:34:     64%|██████▎   | 77/121 [00:00<00:00, 3304.63 it/sec, obj=6]
INFO - 08:58:34:     64%|██████▍   | 78/121 [00:00<00:00, 3306.27 it/sec, obj=-3]
INFO - 08:58:34:     65%|██████▌   | 79/121 [00:00<00:00, 3307.91 it/sec, obj=-2]
INFO - 08:58:34:     66%|██████▌   | 80/121 [00:00<00:00, 3309.93 it/sec, obj=-1]
INFO - 08:58:34:     67%|██████▋   | 81/121 [00:00<00:00, 3311.84 it/sec, obj=0]
INFO - 08:58:34:     68%|██████▊   | 82/121 [00:00<00:00, 3313.64 it/sec, obj=1]
INFO - 08:58:34:     69%|██████▊   | 83/121 [00:00<00:00, 3315.40 it/sec, obj=2]
INFO - 08:58:34:     69%|██████▉   | 84/121 [00:00<00:00, 3317.43 it/sec, obj=3]
INFO - 08:58:34:     70%|███████   | 85/121 [00:00<00:00, 3292.78 it/sec, obj=4]
INFO - 08:58:34:     71%|███████   | 86/121 [00:00<00:00, 3284.20 it/sec, obj=5]
INFO - 08:58:34:     72%|███████▏  | 87/121 [00:00<00:00, 3262.77 it/sec, obj=6]
INFO - 08:58:34:     73%|███████▎  | 88/121 [00:00<00:00, 3247.36 it/sec, obj=7]
INFO - 08:58:34:     74%|███████▎  | 89/121 [00:00<00:00, 3246.99 it/sec, obj=-2]
INFO - 08:58:34:     74%|███████▍  | 90/121 [00:00<00:00, 3248.40 it/sec, obj=-1]
INFO - 08:58:34:     75%|███████▌  | 91/121 [00:00<00:00, 3250.26 it/sec, obj=0]
INFO - 08:58:34:     76%|███████▌  | 92/121 [00:00<00:00, 3252.14 it/sec, obj=1]
INFO - 08:58:34:     77%|███████▋  | 93/121 [00:00<00:00, 3253.84 it/sec, obj=2]
INFO - 08:58:34:     78%|███████▊  | 94/121 [00:00<00:00, 3255.88 it/sec, obj=3]
INFO - 08:58:34:     79%|███████▊  | 95/121 [00:00<00:00, 3257.83 it/sec, obj=4]
INFO - 08:58:34:     79%|███████▉  | 96/121 [00:00<00:00, 3258.27 it/sec, obj=5]
INFO - 08:58:34:     80%|████████  | 97/121 [00:00<00:00, 3258.93 it/sec, obj=6]
INFO - 08:58:34:     81%|████████  | 98/121 [00:00<00:00, 3260.74 it/sec, obj=7]
INFO - 08:58:34:     82%|████████▏ | 99/121 [00:00<00:00, 3262.59 it/sec, obj=8]
INFO - 08:58:34:     83%|████████▎ | 100/121 [00:00<00:00, 3264.56 it/sec, obj=-1]
INFO - 08:58:34:     83%|████████▎ | 101/121 [00:00<00:00, 3261.39 it/sec, obj=0]
INFO - 08:58:34:     84%|████████▍ | 102/121 [00:00<00:00, 3262.53 it/sec, obj=1]
INFO - 08:58:34:     85%|████████▌ | 103/121 [00:00<00:00, 3264.07 it/sec, obj=2]
INFO - 08:58:34:     86%|████████▌ | 104/121 [00:00<00:00, 3265.86 it/sec, obj=3]
INFO - 08:58:34:     87%|████████▋ | 105/121 [00:00<00:00, 3267.71 it/sec, obj=4]
INFO - 08:58:34:     88%|████████▊ | 106/121 [00:00<00:00, 3269.43 it/sec, obj=5]
INFO - 08:58:34:     88%|████████▊ | 107/121 [00:00<00:00, 3271.26 it/sec, obj=6]
INFO - 08:58:34:     89%|████████▉ | 108/121 [00:00<00:00, 3273.04 it/sec, obj=7]
INFO - 08:58:34:     90%|█████████ | 109/121 [00:00<00:00, 3274.71 it/sec, obj=8]
INFO - 08:58:34:     91%|█████████ | 110/121 [00:00<00:00, 3274.20 it/sec, obj=9]
INFO - 08:58:34:     92%|█████████▏| 111/121 [00:00<00:00, 3275.28 it/sec, obj=0]
INFO - 08:58:34:     93%|█████████▎| 112/121 [00:00<00:00, 3259.00 it/sec, obj=1]
INFO - 08:58:34:     93%|█████████▎| 113/121 [00:00<00:00, 3241.44 it/sec, obj=2]
INFO - 08:58:34:     94%|█████████▍| 114/121 [00:00<00:00, 3239.24 it/sec, obj=3]
INFO - 08:58:34:     95%|█████████▌| 115/121 [00:00<00:00, 3239.80 it/sec, obj=4]
INFO - 08:58:34:     96%|█████████▌| 116/121 [00:00<00:00, 3240.70 it/sec, obj=5]
INFO - 08:58:34:     97%|█████████▋| 117/121 [00:00<00:00, 3241.80 it/sec, obj=6]
INFO - 08:58:34:     98%|█████████▊| 118/121 [00:00<00:00, 3243.05 it/sec, obj=7]
INFO - 08:58:34:     98%|█████████▊| 119/121 [00:00<00:00, 3243.98 it/sec, obj=8]
INFO - 08:58:34:     99%|█████████▉| 120/121 [00:00<00:00, 3245.13 it/sec, obj=9]
INFO - 08:58:34:    100%|██████████| 121/121 [00:00<00:00, 3240.17 it/sec, obj=10]
INFO - 08:58:34: Optimization result:
INFO - 08:58:34:    Optimizer info:
INFO - 08:58:34:       Status: None
INFO - 08:58:34:       Message: None
INFO - 08:58:34:       Number of calls to the objective function by the optimizer: 121
INFO - 08:58:34:    Solution:
INFO - 08:58:34:       Objective: -10.0
INFO - 08:58:34:       Design space:
INFO - 08:58:34:          +------+-------------+-------+-------------+---------+
INFO - 08:58:34:          | Name | Lower bound | Value | Upper bound | Type    |
INFO - 08:58:34:          +------+-------------+-------+-------------+---------+
INFO - 08:58:34:          | x[0] |      -5     |   -5  |      5      | integer |
INFO - 08:58:34:          | x[1] |      -5     |   -5  |      5      | integer |
INFO - 08:58:34:          +------+-------------+-------+-------------+---------+
Optimization result:
  • Design variables: [-5. -5.]
  • Objective function: -10.0
  • Feasible solution: True


Post-process the results

execute_post(
    problem,
    "ScatterPlotMatrix",
    variable_names=["x", "f"],
    save=False,
    show=True,
)
plot simple opt 3
<gemseo.post.scatter_mat.ScatterPlotMatrix object at 0x7f8b0abd1ca0>

Note that you can get all the optimization algorithms names:

DOEFactory().algorithms
['CustomDOE', 'DiagonalDOE', 'OT_SOBOL', 'OT_RANDOM', 'OT_HASELGROVE', 'OT_REVERSE_HALTON', 'OT_HALTON', 'OT_FAURE', 'OT_MONTE_CARLO', 'OT_FACTORIAL', 'OT_COMPOSITE', 'OT_AXIAL', 'OT_OPT_LHS', 'OT_LHS', 'OT_LHSC', 'OT_FULLFACT', 'OT_SOBOL_INDICES', 'fullfact', 'ff2n', 'pbdesign', 'bbdesign', 'ccdesign', 'lhs', 'Halton', 'LHS', 'MC', 'PoissonDisk', 'Sobol']

Total running time of the script: (0 minutes 0.789 seconds)

Gallery generated by Sphinx-Gallery