Note
Click here to download the full example code
Analytical test case # 3¶
In this example, we consider a simple optimization problem to illustrate algorithms interfaces and DOE libraries integration. Integer variables are used
Imports¶
from __future__ import annotations
from gemseo.algos.design_space import DesignSpace
from gemseo.algos.doe.doe_factory import DOEFactory
from gemseo.algos.opt_problem import OptimizationProblem
from gemseo.api import configure_logger
from gemseo.api import execute_post
from gemseo.core.mdofunctions.mdo_function import MDOFunction
from numpy import sum as np_sum
LOGGER = configure_logger()
Define the objective function¶
We define the objective function \(f(x)=\sum_{i=1}^dx_i\)
using a MDOFunction
.
objective = MDOFunction(np_sum, name="f", expr="sum(x)")
Define the design space¶
Then, we define the DesignSpace
with GEMSEO.
design_space = DesignSpace()
design_space.add_variable("x", 2, l_b=-5, u_b=5, var_type="integer")
Define the optimization problem¶
Then, we define the OptimizationProblem
with GEMSEO.
problem = OptimizationProblem(design_space)
problem.objective = objective
Solve the optimization problem using a DOE algorithm¶
We can see this optimization problem as a trade-off and solve it by means of a design of experiments (DOE), e.g. full factorial design
DOEFactory().execute(problem, "fullfact", n_samples=11**2)
INFO - 13:29:07: Optimization problem:
INFO - 13:29:07: minimize f = sum(x)
INFO - 13:29:07: with respect to x
INFO - 13:29:07: over the design space:
INFO - 13:29:07: +------+-------------+-------+-------------+---------+
INFO - 13:29:07: | name | lower_bound | value | upper_bound | type |
INFO - 13:29:07: +------+-------------+-------+-------------+---------+
INFO - 13:29:07: | x[0] | -5 | None | 5 | integer |
INFO - 13:29:07: | x[1] | -5 | None | 5 | integer |
INFO - 13:29:07: +------+-------------+-------+-------------+---------+
INFO - 13:29:07: Solving optimization problem with algorithm fullfact:
INFO - 13:29:07: ... 0%| | 0/121 [00:00<?, ?it]
INFO - 13:29:07: ... 1%| | 1/121 [00:00<00:00, 4871.43 it/sec, obj=-10]
INFO - 13:29:07: ... 2%|▏ | 2/121 [00:00<00:00, 3685.68 it/sec, obj=-9]
INFO - 13:29:07: ... 2%|▏ | 3/121 [00:00<00:00, 3371.63 it/sec, obj=-8]
INFO - 13:29:07: ... 3%|▎ | 4/121 [00:00<00:00, 3353.43 it/sec, obj=-7]
INFO - 13:29:07: ... 4%|▍ | 5/121 [00:00<00:00, 3351.15 it/sec, obj=-6]
INFO - 13:29:07: ... 5%|▍ | 6/121 [00:00<00:00, 3347.41 it/sec, obj=-5]
INFO - 13:29:07: ... 6%|▌ | 7/121 [00:00<00:00, 3343.60 it/sec, obj=-4]
INFO - 13:29:07: ... 7%|▋ | 8/121 [00:00<00:00, 3363.18 it/sec, obj=-3]
INFO - 13:29:07: ... 7%|▋ | 9/121 [00:00<00:00, 3377.66 it/sec, obj=-2]
INFO - 13:29:07: ... 8%|▊ | 10/121 [00:00<00:00, 3320.38 it/sec, obj=-1]
INFO - 13:29:07: ... 9%|▉ | 11/121 [00:00<00:00, 3326.17 it/sec, obj=0]
INFO - 13:29:07: ... 10%|▉ | 12/121 [00:00<00:00, 3338.75 it/sec, obj=-9]
INFO - 13:29:07: ... 11%|█ | 13/121 [00:00<00:00, 3351.11 it/sec, obj=-8]
INFO - 13:29:07: ... 12%|█▏ | 14/121 [00:00<00:00, 3362.36 it/sec, obj=-7]
INFO - 13:29:07: ... 12%|█▏ | 15/121 [00:00<00:00, 3371.99 it/sec, obj=-6]
INFO - 13:29:07: ... 13%|█▎ | 16/121 [00:00<00:00, 3349.08 it/sec, obj=-5]
INFO - 13:29:07: ... 14%|█▍ | 17/121 [00:00<00:00, 3349.93 it/sec, obj=-4]
INFO - 13:29:07: ... 15%|█▍ | 18/121 [00:00<00:00, 3276.94 it/sec, obj=-3]
INFO - 13:29:07: ... 16%|█▌ | 19/121 [00:00<00:00, 3252.46 it/sec, obj=-2]
INFO - 13:29:07: ... 17%|█▋ | 20/121 [00:00<00:00, 3259.61 it/sec, obj=-1]
INFO - 13:29:07: ... 17%|█▋ | 21/121 [00:00<00:00, 3270.35 it/sec, obj=0]
INFO - 13:29:07: ... 18%|█▊ | 22/121 [00:00<00:00, 3278.66 it/sec, obj=1]
INFO - 13:29:07: ... 19%|█▉ | 23/121 [00:00<00:00, 3268.03 it/sec, obj=-8]
INFO - 13:29:07: ... 20%|█▉ | 24/121 [00:00<00:00, 3276.27 it/sec, obj=-7]
INFO - 13:29:07: ... 21%|██ | 25/121 [00:00<00:00, 3284.50 it/sec, obj=-6]
INFO - 13:29:07: ... 21%|██▏ | 26/121 [00:00<00:00, 3292.13 it/sec, obj=-5]
INFO - 13:29:07: ... 22%|██▏ | 27/121 [00:00<00:00, 3299.23 it/sec, obj=-4]
INFO - 13:29:07: ... 23%|██▎ | 28/121 [00:00<00:00, 3306.51 it/sec, obj=-3]
INFO - 13:29:07: ... 24%|██▍ | 29/121 [00:00<00:00, 3295.00 it/sec, obj=-2]
INFO - 13:29:07: ... 25%|██▍ | 30/121 [00:00<00:00, 3296.98 it/sec, obj=-1]
INFO - 13:29:07: ... 26%|██▌ | 31/121 [00:00<00:00, 3300.25 it/sec, obj=0]
INFO - 13:29:07: ... 26%|██▋ | 32/121 [00:00<00:00, 3303.74 it/sec, obj=1]
INFO - 13:29:07: ... 27%|██▋ | 33/121 [00:00<00:00, 3304.26 it/sec, obj=2]
INFO - 13:29:07: ... 28%|██▊ | 34/121 [00:00<00:00, 3309.12 it/sec, obj=-7]
INFO - 13:29:07: ... 29%|██▉ | 35/121 [00:00<00:00, 3314.68 it/sec, obj=-6]
INFO - 13:29:07: ... 30%|██▉ | 36/121 [00:00<00:00, 3307.52 it/sec, obj=-5]
INFO - 13:29:07: ... 31%|███ | 37/121 [00:00<00:00, 3308.16 it/sec, obj=-4]
INFO - 13:29:07: ... 31%|███▏ | 38/121 [00:00<00:00, 3312.90 it/sec, obj=-3]
INFO - 13:29:07: ... 32%|███▏ | 39/121 [00:00<00:00, 3318.62 it/sec, obj=-2]
INFO - 13:29:07: ... 33%|███▎ | 40/121 [00:00<00:00, 3323.80 it/sec, obj=-1]
INFO - 13:29:07: ... 34%|███▍ | 41/121 [00:00<00:00, 3328.68 it/sec, obj=0]
INFO - 13:29:07: ... 35%|███▍ | 42/121 [00:00<00:00, 3324.48 it/sec, obj=1]
INFO - 13:29:07: ... 36%|███▌ | 43/121 [00:00<00:00, 3323.66 it/sec, obj=2]
INFO - 13:29:07: ... 36%|███▋ | 44/121 [00:00<00:00, 3324.85 it/sec, obj=3]
INFO - 13:29:07: ... 37%|███▋ | 45/121 [00:00<00:00, 3326.17 it/sec, obj=-6]
INFO - 13:29:07: ... 38%|███▊ | 46/121 [00:00<00:00, 3324.74 it/sec, obj=-5]
INFO - 13:29:07: ... 39%|███▉ | 47/121 [00:00<00:00, 3328.53 it/sec, obj=-4]
INFO - 13:29:07: ... 40%|███▉ | 48/121 [00:00<00:00, 3332.56 it/sec, obj=-3]
INFO - 13:29:07: ... 40%|████ | 49/121 [00:00<00:00, 3336.43 it/sec, obj=-2]
INFO - 13:29:07: ... 41%|████▏ | 50/121 [00:00<00:00, 3331.40 it/sec, obj=-1]
INFO - 13:29:07: ... 42%|████▏ | 51/121 [00:00<00:00, 3334.52 it/sec, obj=0]
INFO - 13:29:07: ... 43%|████▎ | 52/121 [00:00<00:00, 3338.49 it/sec, obj=1]
INFO - 13:29:07: ... 44%|████▍ | 53/121 [00:00<00:00, 3341.87 it/sec, obj=2]
INFO - 13:29:07: ... 45%|████▍ | 54/121 [00:00<00:00, 3345.09 it/sec, obj=3]
INFO - 13:29:07: ... 45%|████▌ | 55/121 [00:00<00:00, 3348.53 it/sec, obj=4]
INFO - 13:29:07: ... 46%|████▋ | 56/121 [00:00<00:00, 3343.88 it/sec, obj=-5]
INFO - 13:29:07: ... 47%|████▋ | 57/121 [00:00<00:00, 3344.32 it/sec, obj=-4]
INFO - 13:29:07: ... 48%|████▊ | 58/121 [00:00<00:00, 3345.34 it/sec, obj=-3]
INFO - 13:29:07: ... 49%|████▉ | 59/121 [00:00<00:00, 3346.73 it/sec, obj=-2]
INFO - 13:29:07: ... 50%|████▉ | 60/121 [00:00<00:00, 3346.70 it/sec, obj=-1]
INFO - 13:29:07: ... 50%|█████ | 61/121 [00:00<00:00, 3349.78 it/sec, obj=0]
INFO - 13:29:07: ... 51%|█████ | 62/121 [00:00<00:00, 3353.02 it/sec, obj=1]
INFO - 13:29:07: ... 52%|█████▏ | 63/121 [00:00<00:00, 3352.08 it/sec, obj=2]
INFO - 13:29:07: ... 53%|█████▎ | 64/121 [00:00<00:00, 3353.26 it/sec, obj=3]
INFO - 13:29:07: ... 54%|█████▎ | 65/121 [00:00<00:00, 3355.86 it/sec, obj=4]
INFO - 13:29:07: ... 55%|█████▍ | 66/121 [00:00<00:00, 3357.93 it/sec, obj=5]
INFO - 13:29:07: ... 55%|█████▌ | 67/121 [00:00<00:00, 3360.58 it/sec, obj=-4]
INFO - 13:29:07: ... 56%|█████▌ | 68/121 [00:00<00:00, 3363.36 it/sec, obj=-3]
INFO - 13:29:07: ... 57%|█████▋ | 69/121 [00:00<00:00, 3365.82 it/sec, obj=-2]
INFO - 13:29:07: ... 58%|█████▊ | 70/121 [00:00<00:00, 3360.67 it/sec, obj=-1]
INFO - 13:29:07: ... 59%|█████▊ | 71/121 [00:00<00:00, 3361.12 it/sec, obj=0]
INFO - 13:29:07: ... 60%|█████▉ | 72/121 [00:00<00:00, 3361.57 it/sec, obj=1]
INFO - 13:29:07: ... 60%|██████ | 73/121 [00:00<00:00, 3362.63 it/sec, obj=2]
INFO - 13:29:07: ... 61%|██████ | 74/121 [00:00<00:00, 3362.60 it/sec, obj=3]
INFO - 13:29:07: ... 62%|██████▏ | 75/121 [00:00<00:00, 3364.85 it/sec, obj=4]
INFO - 13:29:07: ... 63%|██████▎ | 76/121 [00:00<00:00, 3367.07 it/sec, obj=5]
INFO - 13:29:07: ... 64%|██████▎ | 77/121 [00:00<00:00, 3364.01 it/sec, obj=6]
INFO - 13:29:07: ... 64%|██████▍ | 78/121 [00:00<00:00, 3364.03 it/sec, obj=-3]
INFO - 13:29:07: ... 65%|██████▌ | 79/121 [00:00<00:00, 3365.70 it/sec, obj=-2]
INFO - 13:29:07: ... 66%|██████▌ | 80/121 [00:00<00:00, 3367.60 it/sec, obj=-1]
INFO - 13:29:07: ... 67%|██████▋ | 81/121 [00:00<00:00, 3369.19 it/sec, obj=0]
INFO - 13:29:07: ... 68%|██████▊ | 82/121 [00:00<00:00, 3370.27 it/sec, obj=1]
INFO - 13:29:07: ... 69%|██████▊ | 83/121 [00:00<00:00, 3366.74 it/sec, obj=2]
INFO - 13:29:07: ... 69%|██████▉ | 84/121 [00:00<00:00, 3365.80 it/sec, obj=3]
INFO - 13:29:07: ... 70%|███████ | 85/121 [00:00<00:00, 3366.12 it/sec, obj=4]
INFO - 13:29:07: ... 71%|███████ | 86/121 [00:00<00:00, 3366.28 it/sec, obj=5]
INFO - 13:29:07: ... 72%|███████▏ | 87/121 [00:00<00:00, 3365.38 it/sec, obj=6]
INFO - 13:29:07: ... 73%|███████▎ | 88/121 [00:00<00:00, 3367.41 it/sec, obj=7]
INFO - 13:29:07: ... 74%|███████▎ | 89/121 [00:00<00:00, 3369.28 it/sec, obj=-2]
INFO - 13:29:07: ... 74%|███████▍ | 90/121 [00:00<00:00, 3370.54 it/sec, obj=-1]
INFO - 13:29:07: ... 75%|███████▌ | 91/121 [00:00<00:00, 3367.85 it/sec, obj=0]
INFO - 13:29:07: ... 76%|███████▌ | 92/121 [00:00<00:00, 3369.39 it/sec, obj=1]
INFO - 13:29:07: ... 77%|███████▋ | 93/121 [00:00<00:00, 3371.07 it/sec, obj=2]
INFO - 13:29:07: ... 78%|███████▊ | 94/121 [00:00<00:00, 3372.55 it/sec, obj=3]
INFO - 13:29:07: ... 79%|███████▊ | 95/121 [00:00<00:00, 3374.05 it/sec, obj=4]
INFO - 13:29:07: ... 79%|███████▉ | 96/121 [00:00<00:00, 3375.56 it/sec, obj=5]
INFO - 13:29:07: ... 80%|████████ | 97/121 [00:00<00:00, 3371.91 it/sec, obj=6]
INFO - 13:29:07: ... 81%|████████ | 98/121 [00:00<00:00, 3371.57 it/sec, obj=7]
INFO - 13:29:07: ... 82%|████████▏ | 99/121 [00:00<00:00, 3371.87 it/sec, obj=8]
INFO - 13:29:07: ... 83%|████████▎ | 100/121 [00:00<00:00, 3372.20 it/sec, obj=-1]
INFO - 13:29:07: ... 83%|████████▎ | 101/121 [00:00<00:00, 3371.68 it/sec, obj=0]
INFO - 13:29:07: ... 84%|████████▍ | 102/121 [00:00<00:00, 3373.20 it/sec, obj=1]
INFO - 13:29:07: ... 85%|████████▌ | 103/121 [00:00<00:00, 3374.39 it/sec, obj=2]
INFO - 13:29:07: ... 86%|████████▌ | 104/121 [00:00<00:00, 3372.80 it/sec, obj=3]
INFO - 13:29:07: ... 87%|████████▋ | 105/121 [00:00<00:00, 3372.79 it/sec, obj=4]
INFO - 13:29:07: ... 88%|████████▊ | 106/121 [00:00<00:00, 3374.11 it/sec, obj=5]
INFO - 13:29:07: ... 88%|████████▊ | 107/121 [00:00<00:00, 3372.82 it/sec, obj=6]
INFO - 13:29:07: ... 89%|████████▉ | 108/121 [00:00<00:00, 3373.28 it/sec, obj=7]
INFO - 13:29:07: ... 90%|█████████ | 109/121 [00:00<00:00, 3373.54 it/sec, obj=8]
INFO - 13:29:07: ... 91%|█████████ | 110/121 [00:00<00:00, 3372.34 it/sec, obj=9]
INFO - 13:29:07: ... 92%|█████████▏| 111/121 [00:00<00:00, 3371.90 it/sec, obj=0]
INFO - 13:29:07: ... 93%|█████████▎| 112/121 [00:00<00:00, 3372.09 it/sec, obj=1]
INFO - 13:29:07: ... 93%|█████████▎| 113/121 [00:00<00:00, 3372.20 it/sec, obj=2]
INFO - 13:29:07: ... 94%|█████████▍| 114/121 [00:00<00:00, 3372.72 it/sec, obj=3]
INFO - 13:29:07: ... 95%|█████████▌| 115/121 [00:00<00:00, 3373.21 it/sec, obj=4]
INFO - 13:29:07: ... 96%|█████████▌| 116/121 [00:00<00:00, 3373.47 it/sec, obj=5]
INFO - 13:29:07: ... 97%|█████████▋| 117/121 [00:00<00:00, 3374.04 it/sec, obj=6]
INFO - 13:29:07: ... 98%|█████████▊| 118/121 [00:00<00:00, 3371.08 it/sec, obj=7]
INFO - 13:29:07: ... 98%|█████████▊| 119/121 [00:00<00:00, 3370.99 it/sec, obj=8]
INFO - 13:29:07: ... 99%|█████████▉| 120/121 [00:00<00:00, 3371.13 it/sec, obj=9]
INFO - 13:29:07: ... 100%|██████████| 121/121 [00:00<00:00, 3371.36 it/sec, obj=10]
INFO - 13:29:07: Optimization result:
INFO - 13:29:07: Optimizer info:
INFO - 13:29:07: Status: None
INFO - 13:29:07: Message: None
INFO - 13:29:07: Number of calls to the objective function by the optimizer: 121
INFO - 13:29:07: Solution:
INFO - 13:29:07: Objective: -10.0
INFO - 13:29:07: Design space:
INFO - 13:29:07: +------+-------------+-------+-------------+---------+
INFO - 13:29:07: | name | lower_bound | value | upper_bound | type |
INFO - 13:29:07: +------+-------------+-------+-------------+---------+
INFO - 13:29:07: | x[0] | -5 | -5 | 5 | integer |
INFO - 13:29:07: | x[1] | -5 | -5 | 5 | integer |
INFO - 13:29:07: +------+-------------+-------+-------------+---------+
Optimization result:
Design variables: [-5. -5.]
Objective function: -10.0
Feasible solution: True
Post-process the results¶
execute_post(
problem,
"ScatterPlotMatrix",
variable_names=["x", "f"],
save=False,
show=True,
)

<gemseo.post.scatter_mat.ScatterPlotMatrix object at 0x7f67b124f9d0>
Note that you can get all the optimization algorithms names:
algo_list = DOEFactory().algorithms
print("Available algorithms ", algo_list)
Available algorithms ['CustomDOE', 'DiagonalDOE', 'OT_SOBOL', 'OT_RANDOM', 'OT_HASELGROVE', 'OT_REVERSE_HALTON', 'OT_HALTON', 'OT_FAURE', 'OT_MONTE_CARLO', 'OT_FACTORIAL', 'OT_COMPOSITE', 'OT_AXIAL', 'OT_OPT_LHS', 'OT_LHS', 'OT_LHSC', 'OT_FULLFACT', 'OT_SOBOL_INDICES', 'fullfact', 'ff2n', 'pbdesign', 'bbdesign', 'ccdesign', 'lhs']
Total running time of the script: ( 0 minutes 0.665 seconds)