Note
Go to the end to download the full example code
Solve a 2D short cantilever topology optimization problem¶
from __future__ import annotations
from gemseo import configure_logger
from gemseo import create_scenario
from gemseo.problems.topo_opt.topopt_initialize import (
initialize_design_space_and_discipline_to,
)
configure_logger()
<RootLogger root (INFO)>
Setup the topology optimization problem¶
Define the target volume fraction:
volume_fraction = 0.3
Define the problem type:
problem_name = "Short_Cantilever"
Define the number of elements in the x- and y- directions:
n_x = 50
n_y = 25
Define the full material Young’s modulus and Poisson’s ratio:
e0 = 1
nu = 0.3
Define the penalty of the SIMP approach:
penalty = 3
Define the minimum member size in the solution:
min_memeber_size = 1.5
Instantiate the DesignSpace
and the disciplines:
design_space, disciplines = initialize_design_space_and_discipline_to(
problem=problem_name,
n_x=n_x,
n_y=n_y,
e0=e0,
nu=nu,
penalty=penalty,
min_member_size=min_memeber_size,
vf0=volume_fraction,
)
Solve the topology optimization problem¶
Generate an MDOScenario
:
scenario = create_scenario(
disciplines,
"DisciplinaryOpt",
"compliance",
design_space,
)
Add the volume fraction constraint to the scenario:
scenario.add_constraint(
"volume fraction", constraint_type="ineq", value=volume_fraction
)
Generate the XDSM:
scenario.xdsmize()
Execute the scenario:
scenario.execute({"max_iter": 200, "algo": "NLOPT_MMA"})
INFO - 09:02:19:
INFO - 09:02:19: *** Start MDOScenario execution ***
INFO - 09:02:19: MDOScenario
INFO - 09:02:19: Disciplines: DensityFilter FininiteElementAnalysis MaterialModelInterpolation VolumeFraction
INFO - 09:02:19: MDO formulation: DisciplinaryOpt
INFO - 09:02:19: Optimization problem:
INFO - 09:02:19: minimize compliance(x)
INFO - 09:02:19: with respect to x
INFO - 09:02:19: subject to constraints:
INFO - 09:02:19: volume fraction(x) <= 0.3
INFO - 09:02:19: Solving optimization problem with algorithm NLOPT_MMA:
INFO - 09:02:19: 1%| | 2/200 [00:00<00:13, 15.18 it/sec, obj=1.46e+3]
INFO - 09:02:19: 2%|▏ | 3/200 [00:00<00:11, 17.02 it/sec, obj=1.45e+3]
INFO - 09:02:19: 2%|▏ | 4/200 [00:00<00:10, 18.15 it/sec, obj=1.45e+3]
INFO - 09:02:19: 2%|▎ | 5/200 [00:00<00:10, 18.69 it/sec, obj=1.45e+3]
INFO - 09:02:19: 3%|▎ | 6/200 [00:00<00:10, 19.18 it/sec, obj=1.43e+3]
INFO - 09:02:19: 4%|▎ | 7/200 [00:00<00:09, 19.59 it/sec, obj=1.4e+3]
INFO - 09:02:19: 4%|▍ | 8/200 [00:00<00:09, 19.83 it/sec, obj=1.36e+3]
INFO - 09:02:19: 4%|▍ | 9/200 [00:00<00:09, 20.03 it/sec, obj=1.2e+3]
INFO - 09:02:19: 5%|▌ | 10/200 [00:00<00:09, 20.23 it/sec, obj=1.01e+3]
INFO - 09:02:19: 6%|▌ | 11/200 [00:00<00:09, 20.38 it/sec, obj=756]
INFO - 09:02:19: 6%|▌ | 12/200 [00:00<00:09, 20.56 it/sec, obj=573]
INFO - 09:02:19: 6%|▋ | 13/200 [00:00<00:09, 20.71 it/sec, obj=509]
INFO - 09:02:19: 7%|▋ | 14/200 [00:00<00:08, 20.85 it/sec, obj=448]
INFO - 09:02:20: 8%|▊ | 15/200 [00:00<00:08, 20.94 it/sec, obj=399]
INFO - 09:02:20: 8%|▊ | 16/200 [00:00<00:08, 21.03 it/sec, obj=360]
INFO - 09:02:20: 8%|▊ | 17/200 [00:00<00:08, 21.09 it/sec, obj=329]
INFO - 09:02:20: 9%|▉ | 18/200 [00:00<00:08, 21.16 it/sec, obj=304]
INFO - 09:02:20: 10%|▉ | 19/200 [00:00<00:08, 21.24 it/sec, obj=278]
INFO - 09:02:20: 10%|█ | 20/200 [00:00<00:08, 21.29 it/sec, obj=251]
INFO - 09:02:20: 10%|█ | 21/200 [00:00<00:08, 21.37 it/sec, obj=231]
INFO - 09:02:20: 11%|█ | 22/200 [00:01<00:08, 21.40 it/sec, obj=213]
INFO - 09:02:20: 12%|█▏ | 23/200 [00:01<00:08, 21.45 it/sec, obj=193]
INFO - 09:02:20: 12%|█▏ | 24/200 [00:01<00:08, 21.50 it/sec, obj=175]
INFO - 09:02:20: 12%|█▎ | 25/200 [00:01<00:08, 21.52 it/sec, obj=161]
INFO - 09:02:20: 13%|█▎ | 26/200 [00:01<00:08, 21.57 it/sec, obj=153]
INFO - 09:02:20: 14%|█▎ | 27/200 [00:01<00:08, 21.60 it/sec, obj=148]
INFO - 09:02:20: 14%|█▍ | 28/200 [00:01<00:07, 21.64 it/sec, obj=145]
INFO - 09:02:20: 14%|█▍ | 29/200 [00:01<00:07, 21.71 it/sec, obj=143]
INFO - 09:02:20: 15%|█▌ | 30/200 [00:01<00:07, 21.78 it/sec, obj=142]
INFO - 09:02:20: 16%|█▌ | 31/200 [00:01<00:07, 21.84 it/sec, obj=141]
INFO - 09:02:20: 16%|█▌ | 32/200 [00:01<00:07, 21.90 it/sec, obj=140]
INFO - 09:02:20: 16%|█▋ | 33/200 [00:01<00:07, 21.96 it/sec, obj=140]
INFO - 09:02:20: 17%|█▋ | 34/200 [00:01<00:07, 22.00 it/sec, obj=140]
INFO - 09:02:20: 18%|█▊ | 35/200 [00:01<00:07, 22.06 it/sec, obj=139]
INFO - 09:02:20: 18%|█▊ | 36/200 [00:01<00:07, 22.11 it/sec, obj=139]
INFO - 09:02:20: 18%|█▊ | 37/200 [00:01<00:07, 22.16 it/sec, obj=139]
INFO - 09:02:21: 19%|█▉ | 38/200 [00:01<00:07, 22.20 it/sec, obj=139]
INFO - 09:02:21: 20%|█▉ | 39/200 [00:01<00:07, 22.24 it/sec, obj=139]
INFO - 09:02:21: 20%|██ | 40/200 [00:01<00:07, 22.29 it/sec, obj=139]
INFO - 09:02:21: 20%|██ | 41/200 [00:01<00:07, 22.33 it/sec, obj=139]
INFO - 09:02:21: 21%|██ | 42/200 [00:01<00:07, 22.38 it/sec, obj=138]
INFO - 09:02:21: 22%|██▏ | 43/200 [00:01<00:07, 22.41 it/sec, obj=138]
INFO - 09:02:21: 22%|██▏ | 44/200 [00:01<00:06, 22.40 it/sec, obj=138]
INFO - 09:02:21: 22%|██▎ | 45/200 [00:02<00:06, 22.42 it/sec, obj=138]
INFO - 09:02:21: 23%|██▎ | 46/200 [00:02<00:06, 22.46 it/sec, obj=138]
INFO - 09:02:21: 24%|██▎ | 47/200 [00:02<00:06, 22.49 it/sec, obj=138]
INFO - 09:02:21: 24%|██▍ | 48/200 [00:02<00:06, 22.51 it/sec, obj=138]
INFO - 09:02:21: 24%|██▍ | 49/200 [00:02<00:06, 22.49 it/sec, obj=138]
INFO - 09:02:21: 25%|██▌ | 50/200 [00:02<00:06, 22.52 it/sec, obj=138]
INFO - 09:02:21: 26%|██▌ | 51/200 [00:02<00:06, 22.54 it/sec, obj=138]
INFO - 09:02:21: 26%|██▌ | 52/200 [00:02<00:06, 22.57 it/sec, obj=138]
INFO - 09:02:21: 26%|██▋ | 53/200 [00:02<00:06, 22.59 it/sec, obj=138]
INFO - 09:02:21: 27%|██▋ | 54/200 [00:02<00:06, 22.60 it/sec, obj=137]
INFO - 09:02:21: 28%|██▊ | 55/200 [00:02<00:06, 22.63 it/sec, obj=137]
INFO - 09:02:21: 28%|██▊ | 56/200 [00:02<00:06, 22.65 it/sec, obj=137]
INFO - 09:02:21: 28%|██▊ | 57/200 [00:02<00:06, 22.69 it/sec, obj=137]
INFO - 09:02:21: 29%|██▉ | 58/200 [00:02<00:06, 22.71 it/sec, obj=137]
INFO - 09:02:21: 30%|██▉ | 59/200 [00:02<00:06, 22.73 it/sec, obj=137]
INFO - 09:02:21: 30%|███ | 60/200 [00:02<00:06, 22.76 it/sec, obj=137]
INFO - 09:02:21: 30%|███ | 61/200 [00:02<00:06, 22.78 it/sec, obj=137]
INFO - 09:02:22: 31%|███ | 62/200 [00:02<00:06, 22.80 it/sec, obj=137]
INFO - 09:02:22: 32%|███▏ | 63/200 [00:02<00:06, 22.83 it/sec, obj=137]
INFO - 09:02:22: 32%|███▏ | 64/200 [00:02<00:05, 22.85 it/sec, obj=137]
INFO - 09:02:22: 32%|███▎ | 65/200 [00:02<00:05, 22.87 it/sec, obj=137]
INFO - 09:02:22: 33%|███▎ | 66/200 [00:02<00:05, 22.89 it/sec, obj=137]
INFO - 09:02:22: 34%|███▎ | 67/200 [00:02<00:05, 22.90 it/sec, obj=137]
INFO - 09:02:22: 34%|███▍ | 68/200 [00:02<00:05, 22.91 it/sec, obj=137]
INFO - 09:02:22: 34%|███▍ | 69/200 [00:03<00:05, 22.93 it/sec, obj=137]
INFO - 09:02:22: 35%|███▌ | 70/200 [00:03<00:05, 22.93 it/sec, obj=137]
INFO - 09:02:22: 36%|███▌ | 71/200 [00:03<00:05, 22.95 it/sec, obj=137]
INFO - 09:02:22: 36%|███▌ | 72/200 [00:03<00:05, 22.96 it/sec, obj=137]
INFO - 09:02:22: 36%|███▋ | 73/200 [00:03<00:05, 22.93 it/sec, obj=137]
INFO - 09:02:22: 37%|███▋ | 74/200 [00:03<00:05, 22.94 it/sec, obj=137]
INFO - 09:02:22: 38%|███▊ | 75/200 [00:03<00:05, 22.95 it/sec, obj=137]
INFO - 09:02:22: 38%|███▊ | 76/200 [00:03<00:05, 22.96 it/sec, obj=137]
INFO - 09:02:22: 38%|███▊ | 77/200 [00:03<00:05, 22.98 it/sec, obj=137]
INFO - 09:02:22: 39%|███▉ | 78/200 [00:03<00:05, 23.00 it/sec, obj=137]
INFO - 09:02:22: 40%|███▉ | 79/200 [00:03<00:05, 23.01 it/sec, obj=137]
INFO - 09:02:22: 40%|████ | 80/200 [00:03<00:05, 23.02 it/sec, obj=137]
INFO - 09:02:22: 40%|████ | 81/200 [00:03<00:05, 23.04 it/sec, obj=137]
INFO - 09:02:22: 41%|████ | 82/200 [00:03<00:05, 23.05 it/sec, obj=137]
INFO - 09:02:22: 42%|████▏ | 83/200 [00:03<00:05, 23.05 it/sec, obj=137]
INFO - 09:02:22: 42%|████▏ | 84/200 [00:03<00:05, 23.06 it/sec, obj=137]
INFO - 09:02:22: 42%|████▎ | 85/200 [00:03<00:04, 23.07 it/sec, obj=137]
INFO - 09:02:23: 43%|████▎ | 86/200 [00:03<00:04, 23.08 it/sec, obj=137]
INFO - 09:02:23: 44%|████▎ | 87/200 [00:03<00:04, 23.10 it/sec, obj=137]
INFO - 09:02:23: 44%|████▍ | 88/200 [00:03<00:04, 23.11 it/sec, obj=137]
INFO - 09:02:23: 44%|████▍ | 89/200 [00:03<00:04, 23.13 it/sec, obj=137]
INFO - 09:02:23: 45%|████▌ | 90/200 [00:03<00:04, 23.14 it/sec, obj=137]
INFO - 09:02:23: 46%|████▌ | 91/200 [00:03<00:04, 23.15 it/sec, obj=137]
INFO - 09:02:23: 46%|████▌ | 92/200 [00:03<00:04, 23.16 it/sec, obj=137]
INFO - 09:02:23: 46%|████▋ | 93/200 [00:04<00:04, 23.17 it/sec, obj=137]
INFO - 09:02:23: 47%|████▋ | 94/200 [00:04<00:04, 23.18 it/sec, obj=137]
INFO - 09:02:23: 48%|████▊ | 95/200 [00:04<00:04, 23.19 it/sec, obj=137]
INFO - 09:02:23: 48%|████▊ | 96/200 [00:04<00:04, 23.20 it/sec, obj=137]
INFO - 09:02:23: 48%|████▊ | 97/200 [00:04<00:04, 23.21 it/sec, obj=137]
INFO - 09:02:23: 49%|████▉ | 98/200 [00:04<00:04, 23.23 it/sec, obj=137]
INFO - 09:02:23: 50%|████▉ | 99/200 [00:04<00:04, 23.23 it/sec, obj=137]
INFO - 09:02:23: 50%|█████ | 100/200 [00:04<00:04, 23.24 it/sec, obj=137]
INFO - 09:02:23: 50%|█████ | 101/200 [00:04<00:04, 23.25 it/sec, obj=137]
INFO - 09:02:23: 51%|█████ | 102/200 [00:04<00:04, 23.25 it/sec, obj=137]
INFO - 09:02:23: 52%|█████▏ | 103/200 [00:04<00:04, 23.26 it/sec, obj=137]
INFO - 09:02:23: 52%|█████▏ | 104/200 [00:04<00:04, 23.27 it/sec, obj=137]
INFO - 09:02:23: 52%|█████▎ | 105/200 [00:04<00:04, 23.28 it/sec, obj=137]
INFO - 09:02:23: 53%|█████▎ | 106/200 [00:04<00:04, 23.29 it/sec, obj=137]
INFO - 09:02:23: 54%|█████▎ | 107/200 [00:04<00:03, 23.30 it/sec, obj=137]
INFO - 09:02:23: 54%|█████▍ | 108/200 [00:04<00:03, 23.30 it/sec, obj=137]
INFO - 09:02:23: 55%|█████▍ | 109/200 [00:04<00:03, 23.31 it/sec, obj=137]
INFO - 09:02:24: 55%|█████▌ | 110/200 [00:04<00:03, 23.32 it/sec, obj=137]
INFO - 09:02:24: 56%|█████▌ | 111/200 [00:04<00:03, 23.33 it/sec, obj=137]
INFO - 09:02:24: 56%|█████▌ | 112/200 [00:04<00:03, 23.35 it/sec, obj=137]
INFO - 09:02:24: 56%|█████▋ | 113/200 [00:04<00:03, 23.36 it/sec, obj=137]
INFO - 09:02:24: 57%|█████▋ | 114/200 [00:04<00:03, 23.37 it/sec, obj=137]
INFO - 09:02:24: 57%|█████▊ | 115/200 [00:04<00:03, 23.38 it/sec, obj=137]
INFO - 09:02:24: 58%|█████▊ | 116/200 [00:04<00:03, 23.39 it/sec, obj=137]
INFO - 09:02:24: 58%|█████▊ | 117/200 [00:05<00:03, 23.40 it/sec, obj=137]
INFO - 09:02:24: 59%|█████▉ | 118/200 [00:05<00:03, 23.40 it/sec, obj=137]
INFO - 09:02:24: 60%|█████▉ | 119/200 [00:05<00:03, 23.40 it/sec, obj=137]
INFO - 09:02:24: 60%|██████ | 120/200 [00:05<00:03, 23.41 it/sec, obj=137]
INFO - 09:02:24: 60%|██████ | 121/200 [00:05<00:03, 23.41 it/sec, obj=137]
INFO - 09:02:24: 61%|██████ | 122/200 [00:05<00:03, 23.41 it/sec, obj=137]
INFO - 09:02:24: 62%|██████▏ | 123/200 [00:05<00:03, 23.41 it/sec, obj=137]
INFO - 09:02:24: 62%|██████▏ | 124/200 [00:05<00:03, 23.41 it/sec, obj=137]
INFO - 09:02:24: 62%|██████▎ | 125/200 [00:05<00:03, 23.42 it/sec, obj=137]
INFO - 09:02:24: 63%|██████▎ | 126/200 [00:05<00:03, 23.43 it/sec, obj=137]
INFO - 09:02:24: 64%|██████▎ | 127/200 [00:05<00:03, 23.44 it/sec, obj=137]
INFO - 09:02:24: 64%|██████▍ | 128/200 [00:05<00:03, 23.44 it/sec, obj=137]
INFO - 09:02:24: 64%|██████▍ | 129/200 [00:05<00:03, 23.46 it/sec, obj=137]
INFO - 09:02:24: 65%|██████▌ | 130/200 [00:05<00:02, 23.46 it/sec, obj=137]
INFO - 09:02:24: 66%|██████▌ | 131/200 [00:05<00:02, 23.47 it/sec, obj=137]
INFO - 09:02:24: 66%|██████▌ | 132/200 [00:05<00:02, 23.47 it/sec, obj=137]
INFO - 09:02:24: 66%|██████▋ | 133/200 [00:05<00:02, 23.48 it/sec, obj=137]
INFO - 09:02:25: 67%|██████▋ | 134/200 [00:05<00:02, 23.48 it/sec, obj=137]
INFO - 09:02:25: 68%|██████▊ | 135/200 [00:05<00:02, 23.49 it/sec, obj=137]
INFO - 09:02:25: 68%|██████▊ | 136/200 [00:05<00:02, 23.49 it/sec, obj=137]
INFO - 09:02:25: 68%|██████▊ | 137/200 [00:05<00:02, 23.50 it/sec, obj=137]
INFO - 09:02:25: 69%|██████▉ | 138/200 [00:05<00:02, 23.50 it/sec, obj=137]
INFO - 09:02:25: 70%|██████▉ | 139/200 [00:05<00:02, 23.51 it/sec, obj=137]
INFO - 09:02:25: 70%|███████ | 140/200 [00:05<00:02, 23.51 it/sec, obj=137]
INFO - 09:02:25: 70%|███████ | 141/200 [00:05<00:02, 23.52 it/sec, obj=137]
INFO - 09:02:25: 71%|███████ | 142/200 [00:06<00:02, 23.52 it/sec, obj=137]
INFO - 09:02:25: 72%|███████▏ | 143/200 [00:06<00:02, 23.52 it/sec, obj=137]
INFO - 09:02:25: 72%|███████▏ | 144/200 [00:06<00:02, 23.53 it/sec, obj=137]
INFO - 09:02:25: 72%|███████▎ | 145/200 [00:06<00:02, 23.54 it/sec, obj=137]
INFO - 09:02:25: 73%|███████▎ | 146/200 [00:06<00:02, 23.55 it/sec, obj=137]
INFO - 09:02:25: 74%|███████▎ | 147/200 [00:06<00:02, 23.56 it/sec, obj=137]
INFO - 09:02:25: 74%|███████▍ | 148/200 [00:06<00:02, 23.56 it/sec, obj=137]
INFO - 09:02:25: 74%|███████▍ | 149/200 [00:06<00:02, 23.57 it/sec, obj=137]
INFO - 09:02:25: 75%|███████▌ | 150/200 [00:06<00:02, 23.57 it/sec, obj=137]
INFO - 09:02:25: 76%|███████▌ | 151/200 [00:06<00:02, 23.58 it/sec, obj=137]
INFO - 09:02:25: 76%|███████▌ | 152/200 [00:06<00:02, 23.58 it/sec, obj=137]
INFO - 09:02:25: 76%|███████▋ | 153/200 [00:06<00:01, 23.59 it/sec, obj=137]
INFO - 09:02:25: 77%|███████▋ | 154/200 [00:06<00:01, 23.59 it/sec, obj=137]
INFO - 09:02:25: 78%|███████▊ | 155/200 [00:06<00:01, 23.60 it/sec, obj=137]
INFO - 09:02:25: 78%|███████▊ | 156/200 [00:06<00:01, 23.60 it/sec, obj=137]
INFO - 09:02:25: 78%|███████▊ | 157/200 [00:06<00:01, 23.61 it/sec, obj=137]
INFO - 09:02:26: 79%|███████▉ | 158/200 [00:06<00:01, 23.61 it/sec, obj=137]
INFO - 09:02:26: 80%|███████▉ | 159/200 [00:06<00:01, 23.59 it/sec, obj=137]
INFO - 09:02:26: 80%|████████ | 160/200 [00:06<00:01, 23.59 it/sec, obj=137]
INFO - 09:02:26: 80%|████████ | 161/200 [00:06<00:01, 23.60 it/sec, obj=137]
INFO - 09:02:26: 81%|████████ | 162/200 [00:06<00:01, 23.61 it/sec, obj=137]
INFO - 09:02:26: 82%|████████▏ | 163/200 [00:06<00:01, 23.62 it/sec, obj=137]
INFO - 09:02:26: 82%|████████▏ | 164/200 [00:06<00:01, 23.62 it/sec, obj=137]
INFO - 09:02:26: 82%|████████▎ | 165/200 [00:06<00:01, 23.63 it/sec, obj=137]
INFO - 09:02:26: 83%|████████▎ | 166/200 [00:07<00:01, 23.63 it/sec, obj=137]
INFO - 09:02:26: 84%|████████▎ | 167/200 [00:07<00:01, 23.63 it/sec, obj=137]
INFO - 09:02:26: 84%|████████▍ | 168/200 [00:07<00:01, 23.64 it/sec, obj=137]
INFO - 09:02:26: 84%|████████▍ | 169/200 [00:07<00:01, 23.64 it/sec, obj=137]
INFO - 09:02:26: 85%|████████▌ | 170/200 [00:07<00:01, 23.64 it/sec, obj=137]
INFO - 09:02:26: 86%|████████▌ | 171/200 [00:07<00:01, 23.64 it/sec, obj=137]
INFO - 09:02:26: 86%|████████▌ | 172/200 [00:07<00:01, 23.65 it/sec, obj=137]
INFO - 09:02:26: 86%|████████▋ | 173/200 [00:07<00:01, 23.65 it/sec, obj=137]
INFO - 09:02:26: 87%|████████▋ | 174/200 [00:07<00:01, 23.66 it/sec, obj=137]
INFO - 09:02:26: 88%|████████▊ | 175/200 [00:07<00:01, 23.66 it/sec, obj=137]
INFO - 09:02:26: 88%|████████▊ | 176/200 [00:07<00:01, 23.66 it/sec, obj=137]
INFO - 09:02:26: 88%|████████▊ | 177/200 [00:07<00:00, 23.67 it/sec, obj=137]
INFO - 09:02:26: 89%|████████▉ | 178/200 [00:07<00:00, 23.67 it/sec, obj=137]
INFO - 09:02:26: 90%|████████▉ | 179/200 [00:07<00:00, 23.67 it/sec, obj=137]
INFO - 09:02:26: 90%|█████████ | 180/200 [00:07<00:00, 23.68 it/sec, obj=137]
INFO - 09:02:26: 90%|█████████ | 181/200 [00:07<00:00, 23.68 it/sec, obj=137]
INFO - 09:02:26: 91%|█████████ | 182/200 [00:07<00:00, 23.68 it/sec, obj=137]
INFO - 09:02:27: 92%|█████████▏| 183/200 [00:07<00:00, 23.69 it/sec, obj=137]
INFO - 09:02:27: 92%|█████████▏| 184/200 [00:07<00:00, 23.70 it/sec, obj=137]
INFO - 09:02:27: 92%|█████████▎| 185/200 [00:07<00:00, 23.71 it/sec, obj=137]
INFO - 09:02:27: 93%|█████████▎| 186/200 [00:07<00:00, 23.72 it/sec, obj=137]
INFO - 09:02:27: 94%|█████████▎| 187/200 [00:07<00:00, 23.72 it/sec, obj=137]
INFO - 09:02:27: 94%|█████████▍| 188/200 [00:07<00:00, 23.72 it/sec, obj=137]
INFO - 09:02:27: 94%|█████████▍| 189/200 [00:07<00:00, 23.73 it/sec, obj=137]
INFO - 09:02:27: 95%|█████████▌| 190/200 [00:08<00:00, 23.73 it/sec, obj=137]
INFO - 09:02:27: 96%|█████████▌| 191/200 [00:08<00:00, 23.73 it/sec, obj=137]
INFO - 09:02:27: 96%|█████████▌| 192/200 [00:08<00:00, 23.74 it/sec, obj=137]
INFO - 09:02:27: 96%|█████████▋| 193/200 [00:08<00:00, 23.74 it/sec, obj=137]
INFO - 09:02:27: 97%|█████████▋| 194/200 [00:08<00:00, 23.74 it/sec, obj=137]
INFO - 09:02:27: 98%|█████████▊| 195/200 [00:08<00:00, 23.74 it/sec, obj=137]
INFO - 09:02:27: 98%|█████████▊| 196/200 [00:08<00:00, 23.75 it/sec, obj=137]
INFO - 09:02:27: 98%|█████████▊| 197/200 [00:08<00:00, 23.75 it/sec, obj=137]
INFO - 09:02:27: 99%|█████████▉| 198/200 [00:08<00:00, 23.75 it/sec, obj=137]
INFO - 09:02:27: 100%|█████████▉| 199/200 [00:08<00:00, 23.75 it/sec, obj=137]
INFO - 09:02:27: 100%|██████████| 200/200 [00:08<00:00, 23.84 it/sec, obj=137]
INFO - 09:02:27: Optimization result:
INFO - 09:02:27: Optimizer info:
INFO - 09:02:27: Status: None
INFO - 09:02:27: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 09:02:27: Number of calls to the objective function by the optimizer: 201
INFO - 09:02:27: Solution:
INFO - 09:02:27: The solution is feasible.
INFO - 09:02:27: Objective: 136.56123312100124
INFO - 09:02:27: Standardized constraints:
INFO - 09:02:27: [volume fraction-0.3] = -1.9140380946858215e-09
INFO - 09:02:27: *** End MDOScenario execution (time: 0:00:08.407936) ***
{'max_iter': 200, 'algo': 'NLOPT_MMA'}
Results¶
Post-process the optimization history:
scenario.post_process(
"BasicHistory", variable_names=["compliance"], show=True, save=False
)
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/envs/5.3.1/lib/python3.9/site-packages/gemseo/datasets/dataset.py:490: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self[columns] = value
<gemseo.post.basic_history.BasicHistory object at 0x7f8add135b80>
Plot the solution
scenario.post_process("TopologyView", n_x=n_x, n_y=n_y, show=True, save=False)
<gemseo.post.topology_view.TopologyView object at 0x7f8adcd8bb80>
Total running time of the script: (0 minutes 9.181 seconds)