Note
Go to the end to download the full example code.
Solve a 2D short cantilever topology optimization problem¶
from __future__ import annotations
from gemseo import configure_logger
from gemseo import create_scenario
from gemseo.problems.topology_optimization.topopt_initialize import (
initialize_design_space_and_discipline_to,
)
configure_logger()
<RootLogger root (INFO)>
Setup the topology optimization problem¶
Define the target volume fraction:
volume_fraction = 0.3
Define the problem type:
problem_name = "Short_Cantilever"
Define the number of elements in the x- and y- directions:
n_x = 50
n_y = 25
Define the full material Young’s modulus and Poisson’s ratio:
e0 = 1
nu = 0.3
Define the penalty of the SIMP approach:
penalty = 3
Define the minimum member size in the solution:
min_memeber_size = 1.5
Instantiate the DesignSpace
and the disciplines:
design_space, disciplines = initialize_design_space_and_discipline_to(
problem=problem_name,
n_x=n_x,
n_y=n_y,
e0=e0,
nu=nu,
penalty=penalty,
min_member_size=min_memeber_size,
vf0=volume_fraction,
)
Solve the topology optimization problem¶
Generate an MDOScenario
:
scenario = create_scenario(
disciplines,
"DisciplinaryOpt",
"compliance",
design_space,
)
Add the volume fraction constraint to the scenario:
scenario.add_constraint(
"volume fraction", constraint_type="ineq", value=volume_fraction
)
Generate the XDSM:
scenario.xdsmize()
Execute the scenario:
scenario.execute({"max_iter": 200, "algo": "NLOPT_MMA"})
INFO - 10:43:04:
INFO - 10:43:04: *** Start MDOScenario execution ***
INFO - 10:43:04: MDOScenario
INFO - 10:43:04: Disciplines: DensityFilter FiniteElementAnalysis MaterialModelInterpolation VolumeFraction
INFO - 10:43:04: MDO formulation: DisciplinaryOpt
INFO - 10:43:04: Optimization problem:
INFO - 10:43:04: minimize compliance(x)
INFO - 10:43:04: with respect to x
INFO - 10:43:04: subject to constraints:
INFO - 10:43:04: volume fraction(x) <= 0.3
INFO - 10:43:04: Solving optimization problem with algorithm NLOPT_MMA:
INFO - 10:43:05: 1%| | 2/200 [00:00<00:11, 16.54 it/sec, obj=1.46e+3]
INFO - 10:43:05: 2%|▏ | 3/200 [00:00<00:10, 18.48 it/sec, obj=1.45e+3]
INFO - 10:43:05: 2%|▏ | 4/200 [00:00<00:09, 19.63 it/sec, obj=1.45e+3]
INFO - 10:43:05: 2%|▎ | 5/200 [00:00<00:09, 20.29 it/sec, obj=1.45e+3]
INFO - 10:43:05: 3%|▎ | 6/200 [00:00<00:09, 20.77 it/sec, obj=1.43e+3]
INFO - 10:43:05: 4%|▎ | 7/200 [00:00<00:09, 21.19 it/sec, obj=1.4e+3]
INFO - 10:43:05: 4%|▍ | 8/200 [00:00<00:08, 21.41 it/sec, obj=1.36e+3]
INFO - 10:43:05: 4%|▍ | 9/200 [00:00<00:08, 21.61 it/sec, obj=1.2e+3]
INFO - 10:43:05: 5%|▌ | 10/200 [00:00<00:08, 21.79 it/sec, obj=1.01e+3]
INFO - 10:43:05: 6%|▌ | 11/200 [00:00<00:08, 21.97 it/sec, obj=756]
INFO - 10:43:05: 6%|▌ | 12/200 [00:00<00:08, 22.13 it/sec, obj=573]
INFO - 10:43:05: 6%|▋ | 13/200 [00:00<00:08, 22.27 it/sec, obj=509]
INFO - 10:43:05: 7%|▋ | 14/200 [00:00<00:08, 22.41 it/sec, obj=448]
INFO - 10:43:05: 8%|▊ | 15/200 [00:00<00:08, 22.48 it/sec, obj=399]
INFO - 10:43:05: 8%|▊ | 16/200 [00:00<00:08, 22.54 it/sec, obj=360]
INFO - 10:43:05: 8%|▊ | 17/200 [00:00<00:08, 22.59 it/sec, obj=329]
INFO - 10:43:05: 9%|▉ | 18/200 [00:00<00:08, 22.65 it/sec, obj=304]
INFO - 10:43:05: 10%|▉ | 19/200 [00:00<00:07, 22.76 it/sec, obj=278]
INFO - 10:43:05: 10%|█ | 20/200 [00:00<00:07, 22.83 it/sec, obj=251]
INFO - 10:43:05: 10%|█ | 21/200 [00:00<00:07, 22.93 it/sec, obj=231]
INFO - 10:43:05: 11%|█ | 22/200 [00:00<00:07, 22.98 it/sec, obj=213]
INFO - 10:43:05: 12%|█▏ | 23/200 [00:00<00:07, 23.03 it/sec, obj=193]
INFO - 10:43:05: 12%|█▏ | 24/200 [00:01<00:07, 23.07 it/sec, obj=175]
INFO - 10:43:06: 12%|█▎ | 25/200 [00:01<00:07, 23.13 it/sec, obj=161]
INFO - 10:43:06: 13%|█▎ | 26/200 [00:01<00:07, 23.20 it/sec, obj=153]
INFO - 10:43:06: 14%|█▎ | 27/200 [00:01<00:07, 23.26 it/sec, obj=148]
INFO - 10:43:06: 14%|█▍ | 28/200 [00:01<00:07, 23.33 it/sec, obj=145]
INFO - 10:43:06: 14%|█▍ | 29/200 [00:01<00:07, 23.40 it/sec, obj=143]
INFO - 10:43:06: 15%|█▌ | 30/200 [00:01<00:07, 23.47 it/sec, obj=142]
INFO - 10:43:06: 16%|█▌ | 31/200 [00:01<00:07, 23.53 it/sec, obj=141]
INFO - 10:43:06: 16%|█▌ | 32/200 [00:01<00:07, 23.59 it/sec, obj=140]
INFO - 10:43:06: 16%|█▋ | 33/200 [00:01<00:07, 23.67 it/sec, obj=140]
INFO - 10:43:06: 17%|█▋ | 34/200 [00:01<00:06, 23.72 it/sec, obj=140]
INFO - 10:43:06: 18%|█▊ | 35/200 [00:01<00:06, 23.79 it/sec, obj=139]
INFO - 10:43:06: 18%|█▊ | 36/200 [00:01<00:06, 23.84 it/sec, obj=139]
INFO - 10:43:06: 18%|█▊ | 37/200 [00:01<00:06, 23.90 it/sec, obj=139]
INFO - 10:43:06: 19%|█▉ | 38/200 [00:01<00:06, 23.94 it/sec, obj=139]
INFO - 10:43:06: 20%|█▉ | 39/200 [00:01<00:06, 23.98 it/sec, obj=139]
INFO - 10:43:06: 20%|██ | 40/200 [00:01<00:06, 24.02 it/sec, obj=139]
INFO - 10:43:06: 20%|██ | 41/200 [00:01<00:06, 24.05 it/sec, obj=139]
INFO - 10:43:06: 21%|██ | 42/200 [00:01<00:06, 24.08 it/sec, obj=138]
INFO - 10:43:06: 22%|██▏ | 43/200 [00:01<00:06, 24.09 it/sec, obj=138]
INFO - 10:43:06: 22%|██▏ | 44/200 [00:01<00:06, 24.11 it/sec, obj=138]
INFO - 10:43:06: 22%|██▎ | 45/200 [00:01<00:06, 24.13 it/sec, obj=138]
INFO - 10:43:06: 23%|██▎ | 46/200 [00:01<00:06, 24.16 it/sec, obj=138]
INFO - 10:43:06: 24%|██▎ | 47/200 [00:01<00:06, 24.18 it/sec, obj=138]
INFO - 10:43:06: 24%|██▍ | 48/200 [00:01<00:06, 24.20 it/sec, obj=138]
INFO - 10:43:06: 24%|██▍ | 49/200 [00:02<00:06, 24.24 it/sec, obj=138]
INFO - 10:43:06: 25%|██▌ | 50/200 [00:02<00:06, 24.27 it/sec, obj=138]
INFO - 10:43:07: 26%|██▌ | 51/200 [00:02<00:06, 24.30 it/sec, obj=138]
INFO - 10:43:07: 26%|██▌ | 52/200 [00:02<00:06, 24.33 it/sec, obj=138]
INFO - 10:43:07: 26%|██▋ | 53/200 [00:02<00:06, 24.36 it/sec, obj=138]
INFO - 10:43:07: 27%|██▋ | 54/200 [00:02<00:05, 24.39 it/sec, obj=137]
INFO - 10:43:07: 28%|██▊ | 55/200 [00:02<00:05, 24.41 it/sec, obj=137]
INFO - 10:43:07: 28%|██▊ | 56/200 [00:02<00:05, 24.43 it/sec, obj=137]
INFO - 10:43:07: 28%|██▊ | 57/200 [00:02<00:05, 24.46 it/sec, obj=137]
INFO - 10:43:07: 29%|██▉ | 58/200 [00:02<00:05, 24.48 it/sec, obj=137]
INFO - 10:43:07: 30%|██▉ | 59/200 [00:02<00:05, 24.51 it/sec, obj=137]
INFO - 10:43:07: 30%|███ | 60/200 [00:02<00:05, 24.54 it/sec, obj=137]
INFO - 10:43:07: 30%|███ | 61/200 [00:02<00:05, 24.56 it/sec, obj=137]
INFO - 10:43:07: 31%|███ | 62/200 [00:02<00:05, 24.58 it/sec, obj=137]
INFO - 10:43:07: 32%|███▏ | 63/200 [00:02<00:05, 24.60 it/sec, obj=137]
INFO - 10:43:07: 32%|███▏ | 64/200 [00:02<00:05, 24.62 it/sec, obj=137]
INFO - 10:43:07: 32%|███▎ | 65/200 [00:02<00:05, 24.64 it/sec, obj=137]
INFO - 10:43:07: 33%|███▎ | 66/200 [00:02<00:05, 24.65 it/sec, obj=137]
INFO - 10:43:07: 34%|███▎ | 67/200 [00:02<00:05, 24.66 it/sec, obj=137]
INFO - 10:43:07: 34%|███▍ | 68/200 [00:02<00:05, 24.67 it/sec, obj=137]
INFO - 10:43:07: 34%|███▍ | 69/200 [00:02<00:05, 24.68 it/sec, obj=137]
INFO - 10:43:07: 35%|███▌ | 70/200 [00:02<00:05, 24.70 it/sec, obj=137]
INFO - 10:43:07: 36%|███▌ | 71/200 [00:02<00:05, 24.71 it/sec, obj=137]
INFO - 10:43:07: 36%|███▌ | 72/200 [00:02<00:05, 24.73 it/sec, obj=137]
INFO - 10:43:07: 36%|███▋ | 73/200 [00:02<00:05, 24.74 it/sec, obj=137]
INFO - 10:43:07: 37%|███▋ | 74/200 [00:02<00:05, 24.75 it/sec, obj=137]
INFO - 10:43:07: 38%|███▊ | 75/200 [00:03<00:05, 24.76 it/sec, obj=137]
INFO - 10:43:07: 38%|███▊ | 76/200 [00:03<00:05, 24.78 it/sec, obj=137]
INFO - 10:43:08: 38%|███▊ | 77/200 [00:03<00:04, 24.80 it/sec, obj=137]
INFO - 10:43:08: 39%|███▉ | 78/200 [00:03<00:04, 24.82 it/sec, obj=137]
INFO - 10:43:08: 40%|███▉ | 79/200 [00:03<00:04, 24.83 it/sec, obj=137]
INFO - 10:43:08: 40%|████ | 80/200 [00:03<00:04, 24.85 it/sec, obj=137]
INFO - 10:43:08: 40%|████ | 81/200 [00:03<00:04, 24.86 it/sec, obj=137]
INFO - 10:43:08: 41%|████ | 82/200 [00:03<00:04, 24.87 it/sec, obj=137]
INFO - 10:43:08: 42%|████▏ | 83/200 [00:03<00:04, 24.88 it/sec, obj=137]
INFO - 10:43:08: 42%|████▏ | 84/200 [00:03<00:04, 24.90 it/sec, obj=137]
INFO - 10:43:08: 42%|████▎ | 85/200 [00:03<00:04, 24.91 it/sec, obj=137]
INFO - 10:43:08: 43%|████▎ | 86/200 [00:03<00:04, 24.92 it/sec, obj=137]
INFO - 10:43:08: 44%|████▎ | 87/200 [00:03<00:04, 24.94 it/sec, obj=137]
INFO - 10:43:08: 44%|████▍ | 88/200 [00:03<00:04, 24.95 it/sec, obj=137]
INFO - 10:43:08: 44%|████▍ | 89/200 [00:03<00:04, 24.97 it/sec, obj=137]
INFO - 10:43:08: 45%|████▌ | 90/200 [00:03<00:04, 24.98 it/sec, obj=137]
INFO - 10:43:08: 46%|████▌ | 91/200 [00:03<00:04, 24.99 it/sec, obj=137]
INFO - 10:43:08: 46%|████▌ | 92/200 [00:03<00:04, 25.00 it/sec, obj=137]
INFO - 10:43:08: 46%|████▋ | 93/200 [00:03<00:04, 25.01 it/sec, obj=137]
INFO - 10:43:08: 47%|████▋ | 94/200 [00:03<00:04, 25.01 it/sec, obj=137]
INFO - 10:43:08: 48%|████▊ | 95/200 [00:03<00:04, 25.02 it/sec, obj=137]
INFO - 10:43:08: 48%|████▊ | 96/200 [00:03<00:04, 25.02 it/sec, obj=137]
INFO - 10:43:08: 48%|████▊ | 97/200 [00:03<00:04, 25.04 it/sec, obj=137]
INFO - 10:43:08: 49%|████▉ | 98/200 [00:03<00:04, 25.04 it/sec, obj=137]
INFO - 10:43:08: 50%|████▉ | 99/200 [00:03<00:04, 25.06 it/sec, obj=137]
INFO - 10:43:08: 50%|█████ | 100/200 [00:03<00:03, 25.07 it/sec, obj=137]
INFO - 10:43:08: 50%|█████ | 101/200 [00:04<00:03, 25.08 it/sec, obj=137]
INFO - 10:43:08: 51%|█████ | 102/200 [00:04<00:03, 25.09 it/sec, obj=137]
INFO - 10:43:09: 52%|█████▏ | 103/200 [00:04<00:03, 25.10 it/sec, obj=137]
INFO - 10:43:09: 52%|█████▏ | 104/200 [00:04<00:03, 25.10 it/sec, obj=137]
INFO - 10:43:09: 52%|█████▎ | 105/200 [00:04<00:03, 25.11 it/sec, obj=137]
INFO - 10:43:09: 53%|█████▎ | 106/200 [00:04<00:03, 25.12 it/sec, obj=137]
INFO - 10:43:09: 54%|█████▎ | 107/200 [00:04<00:03, 25.12 it/sec, obj=137]
INFO - 10:43:09: 54%|█████▍ | 108/200 [00:04<00:03, 25.13 it/sec, obj=137]
INFO - 10:43:09: 55%|█████▍ | 109/200 [00:04<00:03, 25.14 it/sec, obj=137]
INFO - 10:43:09: 55%|█████▌ | 110/200 [00:04<00:03, 25.14 it/sec, obj=137]
INFO - 10:43:09: 56%|█████▌ | 111/200 [00:04<00:03, 25.15 it/sec, obj=137]
INFO - 10:43:09: 56%|█████▌ | 112/200 [00:04<00:03, 25.17 it/sec, obj=137]
INFO - 10:43:09: 56%|█████▋ | 113/200 [00:04<00:03, 25.18 it/sec, obj=137]
INFO - 10:43:09: 57%|█████▋ | 114/200 [00:04<00:03, 25.19 it/sec, obj=137]
INFO - 10:43:09: 57%|█████▊ | 115/200 [00:04<00:03, 25.19 it/sec, obj=137]
INFO - 10:43:09: 58%|█████▊ | 116/200 [00:04<00:03, 25.20 it/sec, obj=137]
INFO - 10:43:09: 58%|█████▊ | 117/200 [00:04<00:03, 25.21 it/sec, obj=137]
INFO - 10:43:09: 59%|█████▉ | 118/200 [00:04<00:03, 25.21 it/sec, obj=137]
INFO - 10:43:09: 60%|█████▉ | 119/200 [00:04<00:03, 25.21 it/sec, obj=137]
INFO - 10:43:09: 60%|██████ | 120/200 [00:04<00:03, 25.21 it/sec, obj=137]
INFO - 10:43:09: 60%|██████ | 121/200 [00:04<00:03, 25.21 it/sec, obj=137]
INFO - 10:43:09: 61%|██████ | 122/200 [00:04<00:03, 25.22 it/sec, obj=137]
INFO - 10:43:09: 62%|██████▏ | 123/200 [00:04<00:03, 25.22 it/sec, obj=137]
INFO - 10:43:09: 62%|██████▏ | 124/200 [00:04<00:03, 25.22 it/sec, obj=137]
INFO - 10:43:09: 62%|██████▎ | 125/200 [00:04<00:02, 25.23 it/sec, obj=137]
INFO - 10:43:09: 63%|██████▎ | 126/200 [00:04<00:02, 25.23 it/sec, obj=137]
INFO - 10:43:09: 64%|██████▎ | 127/200 [00:05<00:02, 25.24 it/sec, obj=137]
INFO - 10:43:09: 64%|██████▍ | 128/200 [00:05<00:02, 25.24 it/sec, obj=137]
INFO - 10:43:10: 64%|██████▍ | 129/200 [00:05<00:02, 25.25 it/sec, obj=137]
INFO - 10:43:10: 65%|██████▌ | 130/200 [00:05<00:02, 25.25 it/sec, obj=137]
INFO - 10:43:10: 66%|██████▌ | 131/200 [00:05<00:02, 25.26 it/sec, obj=137]
INFO - 10:43:10: 66%|██████▌ | 132/200 [00:05<00:02, 25.27 it/sec, obj=137]
INFO - 10:43:10: 66%|██████▋ | 133/200 [00:05<00:02, 25.27 it/sec, obj=137]
INFO - 10:43:10: 67%|██████▋ | 134/200 [00:05<00:02, 25.28 it/sec, obj=137]
INFO - 10:43:10: 68%|██████▊ | 135/200 [00:05<00:02, 25.29 it/sec, obj=137]
INFO - 10:43:10: 68%|██████▊ | 136/200 [00:05<00:02, 25.29 it/sec, obj=137]
INFO - 10:43:10: 68%|██████▊ | 137/200 [00:05<00:02, 25.30 it/sec, obj=137]
INFO - 10:43:10: 69%|██████▉ | 138/200 [00:05<00:02, 25.30 it/sec, obj=137]
INFO - 10:43:10: 70%|██████▉ | 139/200 [00:05<00:02, 25.31 it/sec, obj=137]
INFO - 10:43:10: 70%|███████ | 140/200 [00:05<00:02, 25.31 it/sec, obj=137]
INFO - 10:43:10: 70%|███████ | 141/200 [00:05<00:02, 25.31 it/sec, obj=137]
INFO - 10:43:10: 71%|███████ | 142/200 [00:05<00:02, 25.32 it/sec, obj=137]
INFO - 10:43:10: 72%|███████▏ | 143/200 [00:05<00:02, 25.32 it/sec, obj=137]
INFO - 10:43:10: 72%|███████▏ | 144/200 [00:05<00:02, 25.32 it/sec, obj=137]
INFO - 10:43:10: 72%|███████▎ | 145/200 [00:05<00:02, 25.33 it/sec, obj=137]
INFO - 10:43:10: 73%|███████▎ | 146/200 [00:05<00:02, 25.33 it/sec, obj=137]
INFO - 10:43:10: 74%|███████▎ | 147/200 [00:05<00:02, 25.34 it/sec, obj=137]
INFO - 10:43:10: 74%|███████▍ | 148/200 [00:05<00:02, 25.33 it/sec, obj=137]
INFO - 10:43:10: 74%|███████▍ | 149/200 [00:05<00:02, 25.34 it/sec, obj=137]
INFO - 10:43:10: 75%|███████▌ | 150/200 [00:05<00:01, 25.34 it/sec, obj=137]
INFO - 10:43:10: 76%|███████▌ | 151/200 [00:05<00:01, 25.35 it/sec, obj=137]
INFO - 10:43:10: 76%|███████▌ | 152/200 [00:05<00:01, 25.35 it/sec, obj=137]
INFO - 10:43:10: 76%|███████▋ | 153/200 [00:06<00:01, 25.36 it/sec, obj=137]
INFO - 10:43:10: 77%|███████▋ | 154/200 [00:06<00:01, 25.36 it/sec, obj=137]
INFO - 10:43:11: 78%|███████▊ | 155/200 [00:06<00:01, 25.37 it/sec, obj=137]
INFO - 10:43:11: 78%|███████▊ | 156/200 [00:06<00:01, 25.37 it/sec, obj=137]
INFO - 10:43:11: 78%|███████▊ | 157/200 [00:06<00:01, 25.37 it/sec, obj=137]
INFO - 10:43:11: 79%|███████▉ | 158/200 [00:06<00:01, 25.38 it/sec, obj=137]
INFO - 10:43:11: 80%|███████▉ | 159/200 [00:06<00:01, 25.39 it/sec, obj=137]
INFO - 10:43:11: 80%|████████ | 160/200 [00:06<00:01, 25.40 it/sec, obj=137]
INFO - 10:43:11: 80%|████████ | 161/200 [00:06<00:01, 25.41 it/sec, obj=137]
INFO - 10:43:11: 81%|████████ | 162/200 [00:06<00:01, 25.42 it/sec, obj=137]
INFO - 10:43:11: 82%|████████▏ | 163/200 [00:06<00:01, 25.42 it/sec, obj=137]
INFO - 10:43:11: 82%|████████▏ | 164/200 [00:06<00:01, 25.44 it/sec, obj=137]
INFO - 10:43:11: 82%|████████▎ | 165/200 [00:06<00:01, 25.44 it/sec, obj=137]
INFO - 10:43:11: 83%|████████▎ | 166/200 [00:06<00:01, 25.44 it/sec, obj=137]
INFO - 10:43:11: 84%|████████▎ | 167/200 [00:06<00:01, 25.45 it/sec, obj=137]
INFO - 10:43:11: 84%|████████▍ | 168/200 [00:06<00:01, 25.45 it/sec, obj=137]
INFO - 10:43:11: 84%|████████▍ | 169/200 [00:06<00:01, 25.45 it/sec, obj=137]
INFO - 10:43:11: 85%|████████▌ | 170/200 [00:06<00:01, 25.45 it/sec, obj=137]
INFO - 10:43:11: 86%|████████▌ | 171/200 [00:06<00:01, 25.46 it/sec, obj=137]
INFO - 10:43:11: 86%|████████▌ | 172/200 [00:06<00:01, 25.46 it/sec, obj=137]
INFO - 10:43:11: 86%|████████▋ | 173/200 [00:06<00:01, 25.47 it/sec, obj=137]
INFO - 10:43:11: 87%|████████▋ | 174/200 [00:06<00:01, 25.47 it/sec, obj=137]
INFO - 10:43:11: 88%|████████▊ | 175/200 [00:06<00:00, 25.48 it/sec, obj=137]
INFO - 10:43:11: 88%|████████▊ | 176/200 [00:06<00:00, 25.48 it/sec, obj=137]
INFO - 10:43:11: 88%|████████▊ | 177/200 [00:06<00:00, 25.48 it/sec, obj=137]
INFO - 10:43:11: 89%|████████▉ | 178/200 [00:06<00:00, 25.48 it/sec, obj=137]
INFO - 10:43:11: 90%|████████▉ | 179/200 [00:07<00:00, 25.48 it/sec, obj=137]
INFO - 10:43:11: 90%|█████████ | 180/200 [00:07<00:00, 25.48 it/sec, obj=137]
INFO - 10:43:12: 90%|█████████ | 181/200 [00:07<00:00, 25.49 it/sec, obj=137]
INFO - 10:43:12: 91%|█████████ | 182/200 [00:07<00:00, 25.49 it/sec, obj=137]
INFO - 10:43:12: 92%|█████████▏| 183/200 [00:07<00:00, 25.50 it/sec, obj=137]
INFO - 10:43:12: 92%|█████████▏| 184/200 [00:07<00:00, 25.50 it/sec, obj=137]
INFO - 10:43:12: 92%|█████████▎| 185/200 [00:07<00:00, 25.51 it/sec, obj=137]
INFO - 10:43:12: 93%|█████████▎| 186/200 [00:07<00:00, 25.52 it/sec, obj=137]
INFO - 10:43:12: 94%|█████████▎| 187/200 [00:07<00:00, 25.52 it/sec, obj=137]
INFO - 10:43:12: 94%|█████████▍| 188/200 [00:07<00:00, 25.53 it/sec, obj=137]
INFO - 10:43:12: 94%|█████████▍| 189/200 [00:07<00:00, 25.53 it/sec, obj=137]
INFO - 10:43:12: 95%|█████████▌| 190/200 [00:07<00:00, 25.54 it/sec, obj=137]
INFO - 10:43:12: 96%|█████████▌| 191/200 [00:07<00:00, 25.54 it/sec, obj=137]
INFO - 10:43:12: 96%|█████████▌| 192/200 [00:07<00:00, 25.54 it/sec, obj=137]
INFO - 10:43:12: 96%|█████████▋| 193/200 [00:07<00:00, 25.55 it/sec, obj=137]
INFO - 10:43:12: 97%|█████████▋| 194/200 [00:07<00:00, 25.55 it/sec, obj=137]
INFO - 10:43:12: 98%|█████████▊| 195/200 [00:07<00:00, 25.55 it/sec, obj=137]
INFO - 10:43:12: 98%|█████████▊| 196/200 [00:07<00:00, 25.56 it/sec, obj=137]
INFO - 10:43:12: 98%|█████████▊| 197/200 [00:07<00:00, 25.56 it/sec, obj=137]
INFO - 10:43:12: 99%|█████████▉| 198/200 [00:07<00:00, 25.56 it/sec, obj=137]
INFO - 10:43:12: 100%|█████████▉| 199/200 [00:07<00:00, 25.55 it/sec, obj=137]
INFO - 10:43:12: 100%|██████████| 200/200 [00:07<00:00, 25.64 it/sec, obj=137]
INFO - 10:43:12: Optimization result:
INFO - 10:43:12: Optimizer info:
INFO - 10:43:12: Status: None
INFO - 10:43:12: Message: Maximum number of iterations reached. GEMSEO stopped the driver.
INFO - 10:43:12: Number of calls to the objective function by the optimizer: 201
INFO - 10:43:12: Solution:
INFO - 10:43:12: The solution is feasible.
INFO - 10:43:12: Objective: 136.56123312100124
INFO - 10:43:12: Standardized constraints:
INFO - 10:43:12: [volume fraction-0.3] = -1.9140380946858215e-09
INFO - 10:43:12: *** End MDOScenario execution (time: 0:00:07.815885) ***
{'max_iter': 200, 'algo': 'NLOPT_MMA'}
Results¶
Post-process the optimization history:
scenario.post_process(
"BasicHistory", variable_names=["compliance"], show=True, save=False
)
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/envs/develop/lib/python3.9/site-packages/gemseo/datasets/dataset.py:483: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
self[columns] = value
<gemseo.post.basic_history.BasicHistory object at 0x7f130619c070>
Plot the solution
scenario.post_process("TopologyView", n_x=n_x, n_y=n_y, show=True, save=False)
<gemseo.post.topology_view.TopologyView object at 0x7f130657d160>
Total running time of the script: (0 minutes 8.641 seconds)