# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Damien Guenot
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Base DOE library."""
from __future__ import annotations
import logging
from abc import abstractmethod
from dataclasses import dataclass
from functools import singledispatchmethod
from multiprocessing import RLock
from multiprocessing import current_process
from pathlib import Path
from typing import TYPE_CHECKING
from typing import Any
from typing import Callable
from typing import ClassVar
from typing import Final
from numpy import array
from numpy import dtype
from numpy import hstack
from numpy import int32
from numpy import savetxt
from numpy import where
from gemseo.algos.design_space import DesignSpace
from gemseo.algos.driver_library import DriverDescription
from gemseo.algos.driver_library import DriverLibOptionType
from gemseo.algos.driver_library import DriverLibrary
from gemseo.algos.opt_problem import EvaluationType
from gemseo.algos.parameter_space import ParameterSpace
from gemseo.core.parallel_execution.callable_parallel_execution import SUBPROCESS_NAME
from gemseo.core.parallel_execution.callable_parallel_execution import (
CallableParallelExecution,
)
from gemseo.core.serializable import Serializable
from gemseo.utils.locks import synchronized
from gemseo.utils.seeder import Seeder
if TYPE_CHECKING:
from collections.abc import Iterable
from pathlib import Path
from gemseo.algos.opt_problem import OptimizationProblem
from gemseo.algos.opt_result import OptimizationResult
from gemseo.typing import RealArray
LOGGER = logging.getLogger(__name__)
# TODO: API: remove DOELibraryOptionType
DOELibraryOptionType = DriverLibOptionType
"""The type of a DOE algorithm option."""
# TODO: API: remove and use EvaluationType directly.
DOELibraryOutputType = EvaluationType
"""The type of the output value in an input-output sample."""
CallbackType = Callable[[int, EvaluationType], Any]
"""The type of a callback function in the context of a ."""
[docs]
@dataclass
class DOEAlgorithmDescription(DriverDescription):
"""The description of a DOE algorithm."""
handle_integer_variables: bool = True
minimum_dimension: int = 1
"""The minimum dimension of the parameter space."""
[docs]
class DOELibrary(
DriverLibrary,
Serializable,
):
"""Abstract class to use for DOE library link See DriverLibrary."""
unit_samples: RealArray
"""The design vector samples projected in the unit hypercube.
In the case of a design space of dimension :math:`d`,
the unit hypercube is :math:`[0,1]^d`.
To access those in the design space,
use :attr:`.samples`.
"""
lock: RLock
"""The lock protecting database storage in multiprocessing."""
samples: RealArray
"""The design vector samples in the design space.
The design space variable types stored as dtype metadata.
To access those in the unit hypercube,
use :attr:`.unit_samples`.
"""
# TODO: API: make the attribute eval_jac private.
eval_jac: bool
"""Whether to evaluate the Jacobian."""
# TODO: API: remove unused DESIGN_ALGO_NAME attribute
DESIGN_ALGO_NAME = "Design algorithm"
# TODO: API: remove unused SAMPLES_TAG attribute
SAMPLES_TAG = "samples"
# TODO: API: remove unused PHIP_CRITERIA attribute
PHIP_CRITERIA = "phi^p"
N_SAMPLES = "n_samples"
# TODO: API: remove unused LEVEL_KEYWORD attribute
LEVEL_KEYWORD = "levels"
EVAL_JAC = "eval_jac"
N_PROCESSES = "n_processes"
WAIT_TIME_BETWEEN_SAMPLES = "wait_time_between_samples"
# TODO: API: remove unused DIMENSION attribute
DIMENSION = "dimension"
SEED = "seed"
_NORMALIZE_DS = False
# TODO: use DesignSpace enum once there are hashable.
__DESIGN_VARIABLE_TYPE_TO_PYTHON_TYPE: Final[dict[str, type]] = {
"float": float,
"integer": int32,
}
_ATTR_NOT_TO_SERIALIZE: ClassVar[set[str]] = {"lock"}
_USE_UNIT_HYPERCUBE: ClassVar[bool] = True
"""Whether the algorithms use a unit hypercube to generate the design samples."""
_seeder: Seeder
"""A seed generator."""
def __init__(self) -> None: # noqa: D107
super().__init__()
self.unit_samples = array([])
self.samples = array([])
self.eval_jac = False
self._seeder = Seeder()
self.lock = RLock()
def _init_shared_memory_attrs(self) -> None:
self.lock = RLock()
@property
def seed(self) -> int:
"""The default seed used for reproducibility reasons."""
return self._seeder.default_seed
@seed.setter
def seed(self, value: int) -> None:
self._seeder.default_seed = value
def _pre_run(
self,
problem: OptimizationProblem,
algo_name: str,
**options: DOELibraryOptionType,
) -> None:
design_space = self.problem.design_space
self.__check_unnormalization_capability(design_space)
super()._pre_run(problem, algo_name, **options)
problem.stop_if_nan = False
self.unit_samples = self._generate_samples(design_space, **options)
LOGGER.debug(
(
"The DOE algorithm %s of %s has generated %s samples "
"in the input unit hypercube of dimension %s."
),
self.algo_name,
self.__class__.__name__,
*self.unit_samples.shape,
)
self.samples = self.__convert_unit_samples_to_samples()
self.init_iter_observer(len(self.unit_samples))
def __convert_unit_samples_to_samples(self) -> RealArray:
"""Convert the unit design vector samples to design vector samples.
We also set the design variable types as dtype metadata.
Returns:
The design vector samples.
"""
design_space = self.problem.design_space
samples = design_space.untransform_vect(self.unit_samples, no_check=True)
variable_types = design_space.variable_types
unique_variable_types = {t[0] for t in variable_types.values()}
if len(unique_variable_types) > 1:
# When the design space have both float and integer variables,
# the samples array has the float dtype.
# We record the integer variables types to later be able to restore the
# proper data type.
python_var_types = {
name: self.__DESIGN_VARIABLE_TYPE_TO_PYTHON_TYPE[type_[0]]
for name, type_ in variable_types.items()
if type_[0] != DesignSpace.DesignVariableType.FLOAT
}
samples.dtype = dtype(samples.dtype, metadata=python_var_types)
return samples
# TODO:API:rename _generate_samples to _generate_unit_samples
@abstractmethod
def _generate_samples(self, design_space: DesignSpace, **options: Any) -> RealArray:
"""Generate the samples of the design vector in the unit hypercube.
Args:
design_space: The design space to be sampled.
**options: The options of the DOE algorithm.
Returns:
The samples of the design vector in the unit hypercube.
"""
# TODO: API: remove and use compute_doe instead
def __call__(
self, n_samples: int | None, dimension: int, **options: Any
) -> RealArray:
"""Generate a design of experiments in the unit hypercube.
Args:
n_samples: The number of samples.
If ``None``, the number of samples is deduced from the ``options``.
dimension: The dimension of the design space.
**options: The options of the DOE algorithm.
Returns:
A design of experiments in the unit hypercube.
"""
design_space = DesignSpace()
design_space.add_variable("x", size=dimension)
return self._generate_samples(
design_space,
**self._update_algorithm_options(n_samples=n_samples, **options),
)
def _run(
self,
eval_jac: bool = False,
n_processes: int = 1,
wait_time_between_samples: float = 0.0,
use_database: bool = True,
callbacks: Iterable[CallbackType] = (),
**options: Any,
) -> OptimizationResult:
"""
Args:
eval_jac: Whether to evaluate the Jacobian function.
n_processes: The maximum simultaneous number of processes
used to parallelize the execution.
wait_time_between_samples: The time to wait between each sample
evaluation, in seconds.
use_database: Whether to store the evaluations in the database.
callbacks: The functions to be evaluated
after each call to :meth:`.OptimizationProblem.evaluate_functions`;
to be called as ``callback(index, (output, jacobian))``.
**options: These options are not used.
""" # noqa: D205, D212
self.evaluate_samples(
eval_jac=eval_jac,
n_processes=n_processes,
wait_time_between_samples=wait_time_between_samples,
use_database=use_database,
callbacks=callbacks,
)
return self.get_optimum_from_database()
# TODO: API: remove this unused method.
# Note: it would be more appropriate to save the samples instead of the unit ones.
[docs]
def export_samples(self, doe_output_file: Path | str) -> None:
"""Export the samples generated by DOE library to a CSV file.
Args:
doe_output_file: The path to the output file.
"""
if not self.unit_samples.size:
msg = "Samples are missing, execute method before export."
raise RuntimeError(msg)
savetxt(doe_output_file, self.unit_samples, delimiter=",")
def _worker(self, sample: RealArray) -> EvaluationType:
"""Wrap the evaluation of the functions for parallel execution.
Args:
sample: A point from the unit hypercube.
Returns:
The computed values.
"""
if current_process().name == SUBPROCESS_NAME:
self.deactivate_progress_bar()
self.problem.database.clear_listeners()
return self.problem.evaluate_functions(
x_vect=self.problem.design_space.untransform_vect(sample, no_check=True),
eval_jac=self.eval_jac,
eval_observables=True,
normalize=False,
)
# TODO: API: remove and merge into _run as it cannot be used safely outside execute.
[docs]
def evaluate_samples(
self,
eval_jac: bool = False,
n_processes: int = 1,
wait_time_between_samples: float = 0.0,
use_database: bool = True,
callbacks: Iterable[CallbackType] = (),
) -> None:
"""Evaluate all the functions of the optimization problem at the samples.
Args:
eval_jac: Whether to evaluate the Jacobian function.
n_processes: The maximum simultaneous number of processes
used to parallelize the execution.
wait_time_between_samples: The time to wait between each sample
evaluation, in seconds.
use_database: Whether to store the evaluations in the database.
callbacks: The functions to be evaluated
after each call to :meth:`.OptimizationProblem.evaluate_functions`;
to be called as ``callback(index, (output, jacobian))``.
Warnings:
This class relies on multiprocessing features when ``n_processes > 1``,
it is therefore necessary to protect its execution with an
``if __name__ == '__main__':`` statement when working on Windows.
"""
self.eval_jac = eval_jac
callbacks = list(callbacks)
if n_processes > 1:
LOGGER.info("Running DOE in parallel on n_processes = %s", n_processes)
# Given a ndarray input value,
# the worker evaluates the functions attached to the problem
# with up to n_processes simultaneous processes.
parallel = CallableParallelExecution(
[self._worker],
n_processes=n_processes,
wait_time_between_fork=wait_time_between_samples,
)
database = self.problem.database
if use_database:
# Add a callback to store the samples in the database on the fly.
callbacks.append(self.__store_in_database)
# Initialize the order of samples
# as parallel execution does not guarantee it.
for sample in self.samples:
database.store(sample, {})
# The list of inputs of the tasks is the list of samples
# A callback function stores the samples on the fly
# during the parallel execution.
parallel.execute(self.unit_samples, exec_callback=callbacks)
if use_database:
# We added empty entries by default to keep order in the database
# but when the DOE point is failed, this is not consistent
# with the serial exec, so we clean the DB
database.remove_empty_entries()
else:
# Sequential execution
if wait_time_between_samples != 0:
LOGGER.warning(
"Wait time between samples option is ignored in sequential run."
)
for index, input_data in enumerate(self.samples):
try:
output_data, jacobian_data = self.problem.evaluate_functions(
x_vect=input_data,
eval_jac=self.eval_jac,
normalize=False,
)
for callback in callbacks:
callback(index, (output_data, jacobian_data))
except ValueError: # noqa: PERF203
LOGGER.exception(
"Problem with evaluation of sample:"
"%s result is not taken into account in DOE.",
input_data,
)
@synchronized
def __store_in_database(
self,
index: int,
output_and_jacobian_data: EvaluationType,
) -> None:
"""Store the output and Jacobian data in the database.
Args:
index: The sample index.
output_and_jacobian_data: The output and Jacobian data.
"""
data, jacobian_data = output_and_jacobian_data
if jacobian_data:
for output_name, jacobian in jacobian_data.items():
data[self.problem.database.get_gradient_name(output_name)] = jacobian
self.problem.database.store(self.samples[index], data)
@classmethod
def __check_unnormalization_capability(cls, design_space) -> None:
"""Check if a point of the unit hypercube can be unnormalized.
Args:
design_space: The design space to unnormalize the point.
Raises:
ValueError: When some components of the design space are unbounded.
"""
if not cls._USE_UNIT_HYPERCUBE or isinstance(design_space, ParameterSpace):
return
components = set(where(hstack(list(design_space.normalize.values())) == 0)[0])
if components:
msg = f"The components {components} of the design space are unbounded."
raise ValueError(msg)
[docs]
def compute_doe(
self,
variables_space: DesignSpace | int,
size: int | None = None,
unit_sampling: bool = False,
**options: DOELibraryOptionType,
) -> RealArray:
"""Compute a design of experiments (DOE) in a variables space.
Args:
variables_space: Either the variables space to be sampled or its dimension.
size: The size of the DOE.
If ``None``, the size is deduced from the ``options``.
unit_sampling: Whether to sample in the unit hypercube.
If the value provided in ``variables_space`` is the dimension,
the samples will be generated in the unit hypercube
whatever the value of ``unit_sampling``.
**options: The options of the DOE algorithm.
Returns:
The design of experiments
whose rows are the samples and columns the variables.
"""
design_space = self.__get_design_space(variables_space)
if not unit_sampling:
self.__check_unnormalization_capability(design_space)
self.init_options_grammar(self.algo_name)
if self.driver_has_option(self.N_SAMPLES):
options[self.N_SAMPLES] = size
unit_samples = self._generate_samples(
design_space,
**self._update_algorithm_options(
initialize_options_grammar=False, **options
),
)
if unit_sampling:
return unit_samples
return design_space.untransform_vect(unit_samples, no_check=True)
@singledispatchmethod
def __get_design_space(self, design_space):
"""Return a design space.
Args:
design_space: Either a design space or a design space dimension.
Returns:
A design space.
"""
return design_space
@__get_design_space.register
def _(self, design_space: DesignSpace):
"""Return a design space.
Args:
design_space: A design space
Returns:
The design space passed as argument.
"""
return design_space
@__get_design_space.register
def _(self, design_space: int):
"""Return a design space from a design space dimension.
Args:
design_space: A design space dimension.
Returns:
A design space
containing a single variable called ``"x"``
whose size is the dimension passed as argument
and lower and upper bounds are 0 and 1 respectively.
"""
design_space_ = DesignSpace()
design_space_.add_variable("x", size=design_space, l_b=0.0, u_b=1.0)
return design_space_