Note
Go to the end to download the full example code
Scatter plot matrix¶
In this example, we illustrate the use of the ScatterPlotMatrix
plot
on the Sobieski’s SSBJ problem.
from __future__ import annotations
from gemseo import configure_logger
from gemseo import create_discipline
from gemseo import create_scenario
from gemseo.problems.sobieski.core.design_space import SobieskiDesignSpace
Import¶
The first step is to import some high-level functions and a method to get the design space.
configure_logger()
<RootLogger root (INFO)>
Description¶
The ScatterPlotMatrix post-processing builds the scatter plot matrix among design variables and outputs functions. Each non-diagonal block represents the samples according to the x- and y- coordinates names while the diagonal ones approximate the probability distributions of the variables, using a kernel-density estimator.
Create disciplines¶
At this point, we instantiate the disciplines of Sobieski’s SSBJ problem: Propulsion, Aerodynamics, Structure and Mission
disciplines = create_discipline([
"SobieskiPropulsion",
"SobieskiAerodynamics",
"SobieskiStructure",
"SobieskiMission",
])
Create design space¶
We also create the SobieskiDesignSpace
.
design_space = SobieskiDesignSpace()
Create and execute scenario¶
The next step is to build a DOE scenario in order to maximize the range, encoded ‘y_4’, with respect to the design parameters, while satisfying the inequality constraints ‘g_1’, ‘g_2’ and ‘g_3’. We can use the MDF formulation, the Monte Carlo DOE algorithm and 30 samples.
scenario = create_scenario(
disciplines,
"MDF",
"y_4",
design_space,
maximize_objective=True,
scenario_type="DOE",
)
scenario.set_differentiation_method()
for constraint in ["g_1", "g_2", "g_3"]:
scenario.add_constraint(constraint, constraint_type="ineq")
scenario.execute({"algo": "OT_MONTE_CARLO", "n_samples": 30})
INFO - 13:13:08:
INFO - 13:13:08: *** Start DOEScenario execution ***
INFO - 13:13:08: DOEScenario
INFO - 13:13:08: Disciplines: SobieskiAerodynamics SobieskiMission SobieskiPropulsion SobieskiStructure
INFO - 13:13:08: MDO formulation: MDF
INFO - 13:13:08: Optimization problem:
INFO - 13:13:08: minimize -y_4(x_shared, x_1, x_2, x_3)
INFO - 13:13:08: with respect to x_1, x_2, x_3, x_shared
INFO - 13:13:08: subject to constraints:
INFO - 13:13:08: g_1(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:13:08: g_2(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:13:08: g_3(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:13:08: over the design space:
INFO - 13:13:08: +-------------+-------------+-------+-------------+-------+
INFO - 13:13:08: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:13:08: +-------------+-------------+-------+-------------+-------+
INFO - 13:13:08: | x_shared[0] | 0.01 | 0.05 | 0.09 | float |
INFO - 13:13:08: | x_shared[1] | 30000 | 45000 | 60000 | float |
INFO - 13:13:08: | x_shared[2] | 1.4 | 1.6 | 1.8 | float |
INFO - 13:13:08: | x_shared[3] | 2.5 | 5.5 | 8.5 | float |
INFO - 13:13:08: | x_shared[4] | 40 | 55 | 70 | float |
INFO - 13:13:08: | x_shared[5] | 500 | 1000 | 1500 | float |
INFO - 13:13:08: | x_1[0] | 0.1 | 0.25 | 0.4 | float |
INFO - 13:13:08: | x_1[1] | 0.75 | 1 | 1.25 | float |
INFO - 13:13:08: | x_2 | 0.75 | 1 | 1.25 | float |
INFO - 13:13:08: | x_3 | 0.1 | 0.5 | 1 | float |
INFO - 13:13:08: +-------------+-------------+-------+-------------+-------+
INFO - 13:13:08: Solving optimization problem with algorithm OT_MONTE_CARLO:
INFO - 13:13:08: 3%|▎ | 1/30 [00:00<00:03, 7.56 it/sec, obj=-166]
INFO - 13:13:08: 7%|▋ | 2/30 [00:00<00:02, 10.70 it/sec, obj=-484]
INFO - 13:13:09: 10%|█ | 3/30 [00:00<00:02, 12.50 it/sec, obj=-481]
INFO - 13:13:09: 13%|█▎ | 4/30 [00:00<00:01, 13.62 it/sec, obj=-384]
INFO - 13:13:09: 17%|█▋ | 5/30 [00:00<00:01, 14.43 it/sec, obj=-1.14e+3]
INFO - 13:13:09: 20%|██ | 6/30 [00:00<00:01, 15.00 it/sec, obj=-290]
INFO - 13:13:09: 23%|██▎ | 7/30 [00:00<00:01, 15.22 it/sec, obj=-630]
INFO - 13:13:09: 27%|██▋ | 8/30 [00:00<00:01, 15.20 it/sec, obj=-346]
INFO - 13:13:09: 30%|███ | 9/30 [00:00<00:01, 15.38 it/sec, obj=-626]
INFO - 13:13:09: 33%|███▎ | 10/30 [00:00<00:01, 15.49 it/sec, obj=-621]
INFO - 13:13:09: 37%|███▋ | 11/30 [00:00<00:01, 15.59 it/sec, obj=-280]
INFO - 13:13:09: 40%|████ | 12/30 [00:00<00:01, 15.30 it/sec, obj=-288]
INFO - 13:13:09: 43%|████▎ | 13/30 [00:00<00:01, 15.07 it/sec, obj=-257]
INFO - 13:13:09: 47%|████▋ | 14/30 [00:00<00:01, 14.86 it/sec, obj=-367]
INFO - 13:13:09: 50%|█████ | 15/30 [00:01<00:01, 14.78 it/sec, obj=-1.08e+3]
INFO - 13:13:09: 53%|█████▎ | 16/30 [00:01<00:00, 14.86 it/sec, obj=-344]
INFO - 13:13:09: 57%|█████▋ | 17/30 [00:01<00:00, 14.78 it/sec, obj=-368]
INFO - 13:13:09: 60%|██████ | 18/30 [00:01<00:00, 14.71 it/sec, obj=-253]
INFO - 13:13:10: 63%|██████▎ | 19/30 [00:01<00:00, 14.58 it/sec, obj=-129]
INFO - 13:13:10: 67%|██████▋ | 20/30 [00:01<00:00, 14.53 it/sec, obj=-1.07e+3]
INFO - 13:13:10: 70%|███████ | 21/30 [00:01<00:00, 14.67 it/sec, obj=-341]
INFO - 13:13:10: 73%|███████▎ | 22/30 [00:01<00:00, 14.75 it/sec, obj=-1e+3]
INFO - 13:13:10: 77%|███████▋ | 23/30 [00:01<00:00, 14.54 it/sec, obj=-586]
INFO - 13:13:10: 80%|████████ | 24/30 [00:01<00:00, 14.61 it/sec, obj=-483]
INFO - 13:13:10: 83%|████████▎ | 25/30 [00:01<00:00, 14.75 it/sec, obj=-392]
INFO - 13:13:10: 87%|████████▋ | 26/30 [00:01<00:00, 14.87 it/sec, obj=-406]
INFO - 13:13:10: 90%|█████████ | 27/30 [00:01<00:00, 14.78 it/sec, obj=-207]
INFO - 13:13:10: 93%|█████████▎| 28/30 [00:01<00:00, 14.90 it/sec, obj=-702]
INFO - 13:13:10: 97%|█████████▋| 29/30 [00:01<00:00, 15.06 it/sec, obj=-423]
INFO - 13:13:10: 100%|██████████| 30/30 [00:01<00:00, 15.12 it/sec, obj=-664]
INFO - 13:13:10: Optimization result:
INFO - 13:13:10: Optimizer info:
INFO - 13:13:10: Status: None
INFO - 13:13:10: Message: None
INFO - 13:13:10: Number of calls to the objective function by the optimizer: 30
INFO - 13:13:10: Solution:
INFO - 13:13:10: The solution is feasible.
INFO - 13:13:10: Objective: -367.45728393799953
INFO - 13:13:10: Standardized constraints:
INFO - 13:13:10: g_1 = [-0.02478574 -0.00310924 -0.00855146 -0.01702654 -0.02484732 -0.04764585
INFO - 13:13:10: -0.19235415]
INFO - 13:13:10: g_2 = -0.09000000000000008
INFO - 13:13:10: g_3 = [-0.98722984 -0.01277016 -0.60760341 -0.0557087 ]
INFO - 13:13:10: Design space:
INFO - 13:13:10: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:13:10: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:13:10: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:13:10: | x_shared[0] | 0.01 | 0.01230934749207792 | 0.09 | float |
INFO - 13:13:10: | x_shared[1] | 30000 | 43456.87364611478 | 60000 | float |
INFO - 13:13:10: | x_shared[2] | 1.4 | 1.731884935123487 | 1.8 | float |
INFO - 13:13:10: | x_shared[3] | 2.5 | 3.894765253193514 | 8.5 | float |
INFO - 13:13:10: | x_shared[4] | 40 | 57.92631048228255 | 70 | float |
INFO - 13:13:10: | x_shared[5] | 500 | 520.4048463450415 | 1500 | float |
INFO - 13:13:10: | x_1[0] | 0.1 | 0.3994784918586811 | 0.4 | float |
INFO - 13:13:10: | x_1[1] | 0.75 | 0.9500312867674923 | 1.25 | float |
INFO - 13:13:10: | x_2 | 0.75 | 1.205851870260564 | 1.25 | float |
INFO - 13:13:10: | x_3 | 0.1 | 0.2108042391973412 | 1 | float |
INFO - 13:13:10: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:13:10: *** End DOEScenario execution (time: 0:00:02.007269) ***
{'eval_jac': False, 'n_samples': 30, 'algo': 'OT_MONTE_CARLO'}
Post-process scenario¶
Lastly, we post-process the scenario by means of the ScatterPlotMatrix
plot which builds scatter plot matrix among design variables, objective
function and constraints.
Tip
Each post-processing method requires different inputs and offers a variety
of customization options. Use the high-level function
get_post_processing_options_schema()
to print a table with
the options for any post-processing algorithm.
Or refer to our dedicated page:
Post-processing algorithms.
design_variables = ["x_shared", "x_1", "x_2", "x_3"]
scenario.post_process(
"ScatterPlotMatrix",
variable_names=[*design_variables, "-y_4"],
save=False,
show=True,
)
<gemseo.post.scatter_mat.ScatterPlotMatrix object at 0x7f8b942d3490>
Total running time of the script: (0 minutes 6.966 seconds)