Note
Go to the end to download the full example code
Variables influence¶
In this example, we illustrate the use of the VariableInfluence
plot
on the Sobieski’s SSBJ problem.
from __future__ import annotations
from gemseo import configure_logger
from gemseo import create_discipline
from gemseo import create_scenario
from gemseo.problems.sobieski.core.design_space import SobieskiDesignSpace
Import¶
The first step is to import some high-level functions and a method to get the design space.
configure_logger()
<RootLogger root (INFO)>
Description¶
The VariableInfluence post-processing performs first-order variable influence analysis.
The method computes \(\frac{d f}{d x_i} \cdot \left(x_{i_*} - x_{initial_design}\right)\), where \(x_{initial_design}\) is the initial value of the variable and \(x_{i_*}\) is the optimal value of the variable.
Create disciplines¶
At this point, we instantiate the disciplines of Sobieski’s SSBJ problem: Propulsion, Aerodynamics, Structure and Mission
disciplines = create_discipline([
"SobieskiPropulsion",
"SobieskiAerodynamics",
"SobieskiStructure",
"SobieskiMission",
])
Create design space¶
We also create the SobieskiDesignSpace
.
design_space = SobieskiDesignSpace()
Create and execute scenario¶
The next step is to build an MDO scenario in order to maximize the range, encoded ‘y_4’, with respect to the design parameters, while satisfying the inequality constraints ‘g_1’, ‘g_2’ and ‘g_3’. We can use the MDF formulation, the SLSQP optimization algorithm and a maximum number of iterations equal to 100.
scenario = create_scenario(
disciplines,
"MDF",
"y_4",
design_space,
maximize_objective=True,
)
scenario.set_differentiation_method()
for constraint in ["g_1", "g_2", "g_3"]:
scenario.add_constraint(constraint, constraint_type="ineq")
scenario.execute({"algo": "SLSQP", "max_iter": 10})
INFO - 13:13:21:
INFO - 13:13:21: *** Start MDOScenario execution ***
INFO - 13:13:21: MDOScenario
INFO - 13:13:21: Disciplines: SobieskiAerodynamics SobieskiMission SobieskiPropulsion SobieskiStructure
INFO - 13:13:21: MDO formulation: MDF
INFO - 13:13:21: Optimization problem:
INFO - 13:13:21: minimize -y_4(x_shared, x_1, x_2, x_3)
INFO - 13:13:21: with respect to x_1, x_2, x_3, x_shared
INFO - 13:13:21: subject to constraints:
INFO - 13:13:21: g_1(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:13:21: g_2(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:13:21: g_3(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:13:21: over the design space:
INFO - 13:13:21: +-------------+-------------+-------+-------------+-------+
INFO - 13:13:21: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:13:21: +-------------+-------------+-------+-------------+-------+
INFO - 13:13:21: | x_shared[0] | 0.01 | 0.05 | 0.09 | float |
INFO - 13:13:21: | x_shared[1] | 30000 | 45000 | 60000 | float |
INFO - 13:13:21: | x_shared[2] | 1.4 | 1.6 | 1.8 | float |
INFO - 13:13:21: | x_shared[3] | 2.5 | 5.5 | 8.5 | float |
INFO - 13:13:21: | x_shared[4] | 40 | 55 | 70 | float |
INFO - 13:13:21: | x_shared[5] | 500 | 1000 | 1500 | float |
INFO - 13:13:21: | x_1[0] | 0.1 | 0.25 | 0.4 | float |
INFO - 13:13:21: | x_1[1] | 0.75 | 1 | 1.25 | float |
INFO - 13:13:21: | x_2 | 0.75 | 1 | 1.25 | float |
INFO - 13:13:21: | x_3 | 0.1 | 0.5 | 1 | float |
INFO - 13:13:21: +-------------+-------------+-------+-------------+-------+
INFO - 13:13:21: Solving optimization problem with algorithm SLSQP:
INFO - 13:13:21: 10%|█ | 1/10 [00:00<00:00, 9.04 it/sec, obj=-536]
INFO - 13:13:22: 20%|██ | 2/10 [00:00<00:01, 6.26 it/sec, obj=-2.12e+3]
WARNING - 13:13:22: MDAJacobi has reached its maximum number of iterations but the normed residual 2.338273970736908e-06 is still above the tolerance 1e-06.
INFO - 13:13:22: 30%|███ | 3/10 [00:00<00:01, 5.23 it/sec, obj=-3.56e+3]
INFO - 13:13:22: 40%|████ | 4/10 [00:00<00:01, 4.98 it/sec, obj=-3.96e+3]
INFO - 13:13:22: 50%|█████ | 5/10 [00:01<00:01, 4.86 it/sec, obj=-3.96e+3]
INFO - 13:13:22: Optimization result:
INFO - 13:13:22: Optimizer info:
INFO - 13:13:22: Status: 8
INFO - 13:13:22: Message: Positive directional derivative for linesearch
INFO - 13:13:22: Number of calls to the objective function by the optimizer: 6
INFO - 13:13:22: Solution:
INFO - 13:13:22: The solution is feasible.
INFO - 13:13:22: Objective: -3963.403105287515
INFO - 13:13:22: Standardized constraints:
INFO - 13:13:22: g_1 = [-0.01806054 -0.03334606 -0.04424918 -0.05183437 -0.05732588 -0.13720864
INFO - 13:13:22: -0.10279136]
INFO - 13:13:22: g_2 = 3.1658077606078194e-06
INFO - 13:13:22: g_3 = [-7.67177346e-01 -2.32822654e-01 -5.57051011e-06 -1.83255000e-01]
INFO - 13:13:22: Design space:
INFO - 13:13:22: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:13:22: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:13:22: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:13:22: | x_shared[0] | 0.01 | 0.06000079145194018 | 0.09 | float |
INFO - 13:13:22: | x_shared[1] | 30000 | 60000 | 60000 | float |
INFO - 13:13:22: | x_shared[2] | 1.4 | 1.4 | 1.8 | float |
INFO - 13:13:22: | x_shared[3] | 2.5 | 2.5 | 8.5 | float |
INFO - 13:13:22: | x_shared[4] | 40 | 70 | 70 | float |
INFO - 13:13:22: | x_shared[5] | 500 | 1500 | 1500 | float |
INFO - 13:13:22: | x_1[0] | 0.1 | 0.3999999322608766 | 0.4 | float |
INFO - 13:13:22: | x_1[1] | 0.75 | 0.75 | 1.25 | float |
INFO - 13:13:22: | x_2 | 0.75 | 0.75 | 1.25 | float |
INFO - 13:13:22: | x_3 | 0.1 | 0.1562438752833519 | 1 | float |
INFO - 13:13:22: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:13:22: *** End MDOScenario execution (time: 0:00:01.175138) ***
{'max_iter': 10, 'algo': 'SLSQP'}
Post-process scenario¶
Lastly, we post-process the scenario by means of the VariableInfluence
plot.
Tip
Each post-processing method requires different inputs and offers a variety
of customization options. Use the high-level function
get_post_processing_options_schema()
to print a table with
the options for any post-processing algorithm.
Or refer to our dedicated page:
Post-processing algorithms.
scenario.post_process("VariableInfluence", fig_size=(20, 20), save=False, show=True)
INFO - 13:13:23: Output name; most influential variables to explain 0.99% of the output variation
INFO - 13:13:23: -y_4; x_1[1], x_2, x_3, x_shared[0], x_shared[1], x_shared[2], x_shared[3], x_shared[4], x_shared[5]
INFO - 13:13:23: g_1[0]; x_1[0], x_1[1], x_shared[0], x_shared[3], x_shared[5]
INFO - 13:13:23: g_1[1]; x_1[0], x_1[1], x_shared[0], x_shared[3], x_shared[5]
INFO - 13:13:23: g_1[2]; x_1[0], x_1[1], x_shared[0], x_shared[3], x_shared[5]
INFO - 13:13:23: g_1[3]; x_1[0], x_1[1], x_shared[0], x_shared[3], x_shared[5]
INFO - 13:13:23: g_1[4]; x_1[0], x_1[1], x_shared[0], x_shared[3], x_shared[5]
INFO - 13:13:23: g_1[5]; x_1[0], x_1[1], x_shared[3], x_shared[5]
INFO - 13:13:23: g_1[6]; x_1[0], x_1[1], x_shared[3], x_shared[5]
INFO - 13:13:23: g_2; x_shared[0]
INFO - 13:13:23: g_3[0]; x_2, x_3, x_shared[0], x_shared[1], x_shared[2], x_shared[4], x_shared[5]
INFO - 13:13:23: g_3[1]; x_2, x_3, x_shared[0], x_shared[1], x_shared[2], x_shared[4], x_shared[5]
INFO - 13:13:23: g_3[2]; x_3, x_shared[1], x_shared[2]
INFO - 13:13:23: g_3[3]; x_3, x_shared[1], x_shared[2]
<gemseo.post.variable_influence.VariableInfluence object at 0x7f8b922efeb0>
Total running time of the script: (0 minutes 2.855 seconds)