Note
Go to the end to download the full example code
Gantt Chart¶
In this example, we illustrate the use of the Gantt chart plot on the Sobieski’s SSBJ problem.
Import¶
The first step is to import some high-level functions and a method to get the design space.
from __future__ import annotations
from gemseo import configure_logger
from gemseo import create_discipline
from gemseo import create_scenario
from gemseo.core.discipline import MDODiscipline
from gemseo.post.core.gantt_chart import create_gantt_chart
from gemseo.problems.sobieski.core.design_space import SobieskiDesignSpace
configure_logger()
<RootLogger root (INFO)>
Create disciplines¶
Then, we instantiate the disciplines of the Sobieski’s SSBJ problem: Propulsion, Aerodynamics, Structure and Mission
disciplines = create_discipline([
"SobieskiPropulsion",
"SobieskiAerodynamics",
"SobieskiStructure",
"SobieskiMission",
])
Create design space¶
We also create the SobieskiDesignSpace
.
design_space = SobieskiDesignSpace()
Create and execute scenario¶
The next step is to build an MDO scenario in order to maximize the range, encoded ‘y_4’, with respect to the design parameters, while satisfying the inequality constraints ‘g_1’, ‘g_2’ and ‘g_3’. We can use the MDF formulation, the SLSQP optimization algorithm and a maximum number of iterations equal to 100.
scenario = create_scenario(
disciplines,
"MDF",
"y_4",
design_space,
maximize_objective=True,
)
for constraint in ["g_1", "g_2", "g_3"]:
scenario.add_constraint(constraint, constraint_type="ineq")
Activate time stamps¶
In order to record all time stamps recording, we have to call this method before the execution of the scenarios
MDODiscipline.activate_time_stamps()
scenario.execute({"algo": "SLSQP", "max_iter": 10})
INFO - 13:08:23:
INFO - 13:08:23: *** Start MDOScenario execution ***
INFO - 13:08:23: MDOScenario
INFO - 13:08:23: Disciplines: SobieskiAerodynamics SobieskiMission SobieskiPropulsion SobieskiStructure
INFO - 13:08:23: MDO formulation: MDF
INFO - 13:08:23: Optimization problem:
INFO - 13:08:23: minimize -y_4(x_shared, x_1, x_2, x_3)
INFO - 13:08:23: with respect to x_1, x_2, x_3, x_shared
INFO - 13:08:23: subject to constraints:
INFO - 13:08:23: g_1(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:08:23: g_2(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:08:23: g_3(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:08:23: over the design space:
INFO - 13:08:23: +-------------+-------------+-------+-------------+-------+
INFO - 13:08:23: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:08:23: +-------------+-------------+-------+-------------+-------+
INFO - 13:08:23: | x_shared[0] | 0.01 | 0.05 | 0.09 | float |
INFO - 13:08:23: | x_shared[1] | 30000 | 45000 | 60000 | float |
INFO - 13:08:23: | x_shared[2] | 1.4 | 1.6 | 1.8 | float |
INFO - 13:08:23: | x_shared[3] | 2.5 | 5.5 | 8.5 | float |
INFO - 13:08:23: | x_shared[4] | 40 | 55 | 70 | float |
INFO - 13:08:23: | x_shared[5] | 500 | 1000 | 1500 | float |
INFO - 13:08:23: | x_1[0] | 0.1 | 0.25 | 0.4 | float |
INFO - 13:08:23: | x_1[1] | 0.75 | 1 | 1.25 | float |
INFO - 13:08:23: | x_2 | 0.75 | 1 | 1.25 | float |
INFO - 13:08:23: | x_3 | 0.1 | 0.5 | 1 | float |
INFO - 13:08:23: +-------------+-------------+-------+-------------+-------+
INFO - 13:08:23: Solving optimization problem with algorithm SLSQP:
INFO - 13:08:23: 10%|█ | 1/10 [00:00<00:02, 4.06 it/sec, obj=-536]
INFO - 13:08:23: 20%|██ | 2/10 [00:00<00:02, 3.08 it/sec, obj=-2.12e+3]
WARNING - 13:08:24: MDAJacobi has reached its maximum number of iterations but the normed residual 2.338273970736908e-06 is still above the tolerance 1e-06.
INFO - 13:08:24: 30%|███ | 3/10 [00:01<00:02, 2.49 it/sec, obj=-3.56e+3]
INFO - 13:08:24: 40%|████ | 4/10 [00:01<00:02, 2.37 it/sec, obj=-3.96e+3]
INFO - 13:08:25: 50%|█████ | 5/10 [00:02<00:02, 2.31 it/sec, obj=-3.96e+3]
INFO - 13:08:25: Optimization result:
INFO - 13:08:25: Optimizer info:
INFO - 13:08:25: Status: 8
INFO - 13:08:25: Message: Positive directional derivative for linesearch
INFO - 13:08:25: Number of calls to the objective function by the optimizer: 6
INFO - 13:08:25: Solution:
INFO - 13:08:25: The solution is feasible.
INFO - 13:08:25: Objective: -3963.403105287515
INFO - 13:08:25: Standardized constraints:
INFO - 13:08:25: g_1 = [-0.01806054 -0.03334606 -0.04424918 -0.05183437 -0.05732588 -0.13720864
INFO - 13:08:25: -0.10279136]
INFO - 13:08:25: g_2 = 3.1658077606078194e-06
INFO - 13:08:25: g_3 = [-7.67177346e-01 -2.32822654e-01 -5.57051011e-06 -1.83255000e-01]
INFO - 13:08:25: Design space:
INFO - 13:08:25: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:08:25: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:08:25: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:08:25: | x_shared[0] | 0.01 | 0.06000079145194018 | 0.09 | float |
INFO - 13:08:25: | x_shared[1] | 30000 | 60000 | 60000 | float |
INFO - 13:08:25: | x_shared[2] | 1.4 | 1.4 | 1.8 | float |
INFO - 13:08:25: | x_shared[3] | 2.5 | 2.5 | 8.5 | float |
INFO - 13:08:25: | x_shared[4] | 40 | 70 | 70 | float |
INFO - 13:08:25: | x_shared[5] | 500 | 1500 | 1500 | float |
INFO - 13:08:25: | x_1[0] | 0.1 | 0.3999999322608766 | 0.4 | float |
INFO - 13:08:25: | x_1[1] | 0.75 | 0.75 | 1.25 | float |
INFO - 13:08:25: | x_2 | 0.75 | 0.75 | 1.25 | float |
INFO - 13:08:25: | x_3 | 0.1 | 0.1562438752833519 | 1 | float |
INFO - 13:08:25: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:08:25: *** End MDOScenario execution (time: 0:00:02.344064) ***
{'max_iter': 10, 'algo': 'SLSQP'}
Post-process scenario¶
Lastly, we plot the Gantt chart.
create_gantt_chart(save=False, show=True)
# Finally, we deactivate the time stamps for other executions
MDODiscipline.deactivate_time_stamps()
Total running time of the script: (0 minutes 2.656 seconds)