Note
Go to the end to download the full example code
Create a surrogate discipline¶
We want to build an MDODiscipline
based on a regression model approximating the following discipline
with two inputs and two outputs:
\(y_1=1+2x_1+3x_2\)
\(y_2=-1-2x_1-3x_2\)
over the unit hypercube \([0,1]\times[0,1]\).
For that, we use a SurrogateDiscipline
relying on an MLRegressionAlgo
from __future__ import annotations
from numpy import array
from gemseo import configure_logger
from gemseo import create_design_space
from gemseo import create_discipline
from gemseo import create_scenario
from gemseo import create_surrogate
Import¶
configure_logger()
<RootLogger root (INFO)>
Create the discipline to learn¶
We can implement this analytic discipline by means of the
AnalyticDiscipline
class.
expressions = {"y_1": "1+2*x_1+3*x_2", "y_2": "-1-2*x_1-3*x_2"}
discipline = create_discipline(
"AnalyticDiscipline", name="func", expressions=expressions
)
Create the input sampling space¶
We create the input sampling space by adding the variables one by one.
design_space = create_design_space()
design_space.add_variable("x_1", l_b=0.0, u_b=1.0)
design_space.add_variable("x_2", l_b=0.0, u_b=1.0)
Create the learning set¶
We can build a learning set by means of a
DOEScenario
with a full factorial design of
experiments. The number of samples can be equal to 9 for example.
scenario = create_scenario(
[discipline], "DisciplinaryOpt", "y_1", design_space, scenario_type="DOE"
)
scenario.execute({"algo": "fullfact", "n_samples": 9})
INFO - 13:10:15:
INFO - 13:10:15: *** Start DOEScenario execution ***
INFO - 13:10:15: DOEScenario
INFO - 13:10:15: Disciplines: func
INFO - 13:10:15: MDO formulation: DisciplinaryOpt
INFO - 13:10:15: Optimization problem:
INFO - 13:10:15: minimize y_1(x_1, x_2)
INFO - 13:10:15: with respect to x_1, x_2
INFO - 13:10:15: over the design space:
INFO - 13:10:15: +------+-------------+-------+-------------+-------+
INFO - 13:10:15: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:10:15: +------+-------------+-------+-------------+-------+
INFO - 13:10:15: | x_1 | 0 | None | 1 | float |
INFO - 13:10:15: | x_2 | 0 | None | 1 | float |
INFO - 13:10:15: +------+-------------+-------+-------------+-------+
INFO - 13:10:15: Solving optimization problem with algorithm fullfact:
INFO - 13:10:15: 11%|█ | 1/9 [00:00<00:00, 279.42 it/sec, obj=1]
INFO - 13:10:15: 22%|██▏ | 2/9 [00:00<00:00, 440.32 it/sec, obj=2]
INFO - 13:10:15: 33%|███▎ | 3/9 [00:00<00:00, 538.95 it/sec, obj=3]
INFO - 13:10:15: 44%|████▍ | 4/9 [00:00<00:00, 636.49 it/sec, obj=2.5]
INFO - 13:10:15: 56%|█████▌ | 5/9 [00:00<00:00, 720.62 it/sec, obj=3.5]
INFO - 13:10:15: 67%|██████▋ | 6/9 [00:00<00:00, 792.70 it/sec, obj=4.5]
INFO - 13:10:15: 78%|███████▊ | 7/9 [00:00<00:00, 853.74 it/sec, obj=4]
INFO - 13:10:15: 89%|████████▉ | 8/9 [00:00<00:00, 900.45 it/sec, obj=5]
INFO - 13:10:15: 100%|██████████| 9/9 [00:00<00:00, 944.50 it/sec, obj=6]
INFO - 13:10:15: Optimization result:
INFO - 13:10:15: Optimizer info:
INFO - 13:10:15: Status: None
INFO - 13:10:15: Message: None
INFO - 13:10:15: Number of calls to the objective function by the optimizer: 9
INFO - 13:10:15: Solution:
INFO - 13:10:15: Objective: 1.0
INFO - 13:10:15: Design space:
INFO - 13:10:15: +------+-------------+-------+-------------+-------+
INFO - 13:10:15: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:10:15: +------+-------------+-------+-------------+-------+
INFO - 13:10:15: | x_1 | 0 | 0 | 1 | float |
INFO - 13:10:15: | x_2 | 0 | 0 | 1 | float |
INFO - 13:10:15: +------+-------------+-------+-------------+-------+
INFO - 13:10:15: *** End DOEScenario execution (time: 0:00:00.023156) ***
{'eval_jac': False, 'n_samples': 9, 'algo': 'fullfact'}
Create the surrogate discipline¶
Then, we build the Gaussian process regression model from the database and displays this model.
dataset = scenario.to_dataset(opt_naming=False)
model = create_surrogate("GaussianProcessRegressor", data=dataset)
INFO - 13:10:15: Build the surrogate discipline: GPR_DOEScenario
INFO - 13:10:15: Dataset size: 9
INFO - 13:10:15: Surrogate model: GaussianProcessRegressor
INFO - 13:10:15: Use the surrogate discipline: GPR_DOEScenario
INFO - 13:10:15: Inputs: x_1, x_2
INFO - 13:10:15: Outputs: y_1
INFO - 13:10:15: Jacobian: use finite differences
Predict output¶
Once it is built, we can use it for prediction, either with default inputs
model.execute()
{'x_1': array([0.5]), 'x_2': array([0.5]), 'y_1': array([3.49999999])}
or with user-defined ones.
model.execute({"x_1": array([1.0]), "x_2": array([2.0])})
{'x_1': array([1.]), 'x_2': array([2.]), 'y_1': array([8.50166028])}
Total running time of the script: (0 minutes 0.170 seconds)