# Source code for gemseo.mlearning.quality_measures.quality_measure

```
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Syver Doving Agdestein
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Measuring the quality of a machine learning algorithm."""
from __future__ import annotations
from abc import abstractmethod
from typing import TYPE_CHECKING
from typing import ClassVar
from typing import Dict
from typing import Optional
from typing import Sequence
from typing import Union
from numpy import array
from numpy import ndarray
from strenum import StrEnum
from gemseo import SEED
from gemseo.core.base_factory import BaseFactory
from gemseo.datasets.dataset import Dataset
from gemseo.utils.metaclasses import ABCGoogleDocstringInheritanceMeta
if TYPE_CHECKING:
from gemseo.mlearning.core.ml_algo import MLAlgo
MeasureType = Union[float, ndarray, Dict[str, ndarray]]
OptionType = Optional[Union[Sequence[int], bool, int, Dataset]]
MeasureOptionsType = Dict[str, OptionType]
[docs]class MLQualityMeasure(metaclass=ABCGoogleDocstringInheritanceMeta):
"""An abstract quality measure to assess a machine learning algorithm.
This measure can be minimized (e.g. :class:`.MSEMeasure`) or maximized (e.g.
:class:`.R2Measure`).
It can be evaluated from the learning dataset, from a test dataset or using
resampling techniques such as boostrap, cross-validation or leave-one-out.
The machine learning algorithm is usually trained. If not but required by the
evaluation technique, the quality measure will train it.
Lastly, the transformers of the algorithm fitted from the learning dataset can be
used as is by the resampling methods or re-fitted for each algorithm trained on a
subset of the learning dataset.
"""
algo: MLAlgo
"""The machine learning algorithm whose quality we want to measure."""
_fit_transformers: bool
"""Whether to re-fit the transformers when using resampling techniques.
If ``False``, use the transformers fitted with the whole learning dataset.
"""
[docs] class EvaluationMethod(StrEnum):
"""The evaluation method."""
LEARN = "LEARN"
"""The name of the method to evaluate the measure on the learning dataset."""
TEST = "TEST"
"""The name of the method to evaluate the measure on a test dataset."""
LOO = "LOO"
"""The name of the method to evaluate the measure by leave-one-out."""
KFOLDS = "KFOLDS"
"""The name of the method to evaluate the measure by cross-validation."""
BOOTSTRAP = "BOOTSTRAP"
"""The name of the method to evaluate the measure by bootstrap."""
[docs] class EvaluationFunctionName(StrEnum):
"""The name of the function associated with an evaluation method."""
LEARN = "evaluate_learn"
TEST = "evaluate_test"
LOO = "evaluate_loo"
KFOLDS = "evaluate_kfolds"
BOOTSTRAP = "evaluate_bootstrap"
SMALLER_IS_BETTER: ClassVar[bool] = True
"""Whether to minimize or maximize the measure."""
_FIT_TRANSFORMERS: ClassVar[bool] = True
"""Whether to re-fit the transformers when using resampling techniques.
If ``False``, use the transformers of the algorithm fitted from the whole learning
dataset.
"""
_RANDOMIZE: ClassVar[bool] = True
"""Whether to shuffle the samples before dividing them in folds."""
def __init__(
self,
algo: MLAlgo,
fit_transformers: bool = _FIT_TRANSFORMERS,
) -> None:
"""
Args:
algo: A machine learning algorithm.
fit_transformers: Whether to re-fit the transformers
when using resampling techniques.
If ``False``,
use the transformers of the algorithm fitted
from the whole learning dataset.
"""
self.algo = algo
self._fit_transformers = fit_transformers
self.__default_seed = SEED
[docs] @abstractmethod
def compute_learning_measure(
self,
samples: Sequence[int] | None = None,
multioutput: bool = True,
) -> MeasureType:
"""Evaluate the quality measure from the learning dataset.
Args:
samples: The indices of the learning samples.
If ``None``, use the whole learning dataset.
multioutput: Whether the quality measure is returned
for each component of the outputs.
Otherwise, the average quality measure.
Returns:
The value of the quality measure.
"""
[docs] @abstractmethod
def compute_test_measure(
self,
test_data: Dataset,
samples: Sequence[int] | None = None,
multioutput: bool = True,
) -> MeasureType:
"""Evaluate the quality measure using a test dataset.
Args:
test_data: The test dataset.
samples: The indices of the learning samples.
If ``None``, use the whole learning dataset.
multioutput: Whether the quality measure is returned
for each component of the outputs.
Otherwise, the average quality measure.
Returns:
The value of the quality measure.
"""
[docs] def compute_leave_one_out_measure(
self,
samples: Sequence[int] | None = None,
multioutput: bool = True,
store_resampling_result: bool = True,
) -> MeasureType:
r"""Evaluate the quality measure using the leave-one-out technique.
Args:
samples: The indices of the learning samples.
If ``None``, use the whole learning dataset.
multioutput: Whether the quality measure is returned
for each component of the outputs.
Otherwise, the average quality measure.
store_resampling_result: Whether to store
the :math:`n` machine learning algorithms and associated predictions
generated by the resampling stage
where :math:`n` is the number of learning samples.
Returns:
The value of the quality measure.
"""
return self.compute_cross_validation_measure(
samples=samples,
n_folds=len(self.algo.learning_set),
multioutput=multioutput,
seed=1,
)
[docs] @abstractmethod
def compute_cross_validation_measure(
self,
n_folds: int = 5,
samples: Sequence[int] | None = None,
multioutput: bool = True,
randomize: bool = _RANDOMIZE,
seed: int | None = None,
store_resampling_result: bool = False,
) -> MeasureType:
"""Evaluate the quality measure using the k-folds technique.
Args:
n_folds: The number of folds.
samples: The indices of the learning samples.
If ``None``, use the whole learning dataset.
multioutput: Whether the quality measure is returned
for each component of the outputs.
Otherwise, the average quality measure.
randomize: Whether to shuffle the samples before dividing them in folds.
seed: The seed of the pseudo-random number generator.
If ``None``,
an unpredictable generator is used.
store_resampling_result: Whether to store
the :math:`n` machine learning algorithms and associated predictions
generated by the resampling stage
where :math:`n` is the number of folds.
Returns:
The value of the quality measure.
"""
[docs] @abstractmethod
def compute_bootstrap_measure(
self,
n_replicates: int = 100,
samples: Sequence[int] | None = None,
multioutput: bool = True,
seed: int | None = None,
store_resampling_result: bool = False,
) -> MeasureType:
"""Evaluate the quality measure using the bootstrap technique.
Args:
n_replicates: The number of bootstrap replicates.
samples: The indices of the learning samples.
If ``None``, use the whole learning dataset.
multioutput: Whether the quality measure is returned
for each component of the outputs.
Otherwise, the average quality measure.
seed: The seed of the pseudo-random number generator.
If ``None``,
an unpredictable generator will be used.
store_resampling_result: Whether to store
the :math:`n` machine learning algorithms and associated predictions
generated by the resampling stage
where :math:`n` is the number of bootstrap replicates.
Returns:
The value of the quality measure.
"""
[docs] @classmethod
def is_better(
cls,
val1: float,
val2: float,
) -> bool:
"""Compare the quality between two values.
This method returns ``True`` if the first one is better than the second one.
For most measures, a smaller value is "better" than a larger one (MSE
etc.). But for some, like an R2-measure, higher values are better than
smaller ones. This comparison method correctly handles this,
regardless of the type of measure.
Args:
val1: The value of the first quality measure.
val2: The value of the second quality measure.
Returns:
Whether val1 is of better quality than val2.
"""
if cls.SMALLER_IS_BETTER:
return val1 < val2
return val1 > val2
def _pre_process(
self,
samples: Sequence[int] | None,
seed: int | None = SEED,
update_seed: bool = False,
):
"""Pre-process the data required for the evaluation of the quality measure.
Args:
samples: The indices of the learning samples.
If ``None``, use the whole learning dataset.
seed: The seed of the pseudo-random number generator.
If ``None``,
then an unpredictable generator will be used.
update_seed: Whether to update the seed before evaluation.
Returns:
The indices of the learning samples and the seed.
"""
if not self.algo.is_trained:
self.algo.learn(samples)
if samples is None:
samples = self.algo.learning_samples_indices
if update_seed:
self.__default_seed += 1
seed = self.__default_seed if seed is None else seed
return array(samples), seed
# TODO: API: remove these aliases in the next major release.
evaluate_loo = compute_leave_one_out_measure
[docs]class MLQualityMeasureFactory(BaseFactory):
"""A factory of :class:`.MLQualityMeasure`."""
_CLASS = MLQualityMeasure
_MODULE_NAMES = ("gemseo.mlearning.quality_measures",)
```