Skip to main content
Ctrl+K
gemseo homepage gemseo homepage
  • User guide
  • Examples
  • API documentation
  • Cheat sheets
  • About us
    • Bibliography
    • Contributing
    • Credits
    • FAQ
    • General index
    • Glossary
    • Licenses
    • Overview
    • Plugins
    • Roadmap
    • Software
    • Upgrading
  • GitLab
  • User guide
  • Examples
  • API documentation
  • Cheat sheets
  • About us
  • Bibliography
  • Contributing
  • Credits
  • FAQ
  • General index
  • Glossary
  • Licenses
  • Overview
  • Plugins
  • Roadmap
  • Software
  • Upgrading
  • GitLab

Section Navigation

  • Make GEMSEO easy to use
    • Interface a software
    • Define an MDO problem
    • Define settings models
    • Cheat sheets
    • Extend GEMSEO features
  • Main concepts
    • Design space
    • Discipline
    • Scenario
    • Data persistence
  • Optimization and DOE
    • The GEMSEO concepts
    • Optimization and DOE framework
    • Optimization algorithms
    • DOE algorithms
  • Design of experiments
  • Multidisciplinary design optimization
    • Coupling visualization
    • MDO formulations
    • Multi Disciplinary Analyses
    • How to deal with post-processing
  • Machine learning
    • Introduction
    • API
    • Unsupervised learning for unlabeled data
    • Supervised learning for input-output data
    • Measure the quality of a machine learning algorithm
    • Calibrate or select a machine learning algorithm
    • Transform data to improve the ML algorithm quality
  • Surrogate models
    • Create a surrogate discipline
  • Uncertainty quantification
    • Introduction
    • Probability distribution
    • Parameter space
    • Statistics
    • Sensitivity analysis
  • Ordinary differential equations
    • Introduction
    • ODEProblem
    • ODEDiscipline
  • Scalable models
    • Scalable models
    • The scalable problem
  • Comprehensive list of tools and their settings
    • Disciplines
    • DOE (design of experiments)
    • Linear solvers
    • Machine learning
    • MDA (multidisciplinary analysis)
    • MDO formulations
    • ODE (ordinary differential equation) solvers
    • Optimizers
    • Post-processors
    • Surrogate disciplines
    • Uncertainty
  • Benchmark problems
  • User guide
  • Main concepts
  • Scenario

Scenario#

  • How to deal with scenarios
    • 1. How is a scenario defined?
    • 2. How to create a scenario?
    • 3. How to execute a scenario?
    • 4. How to get the optimum solution?
    • 5. How to log disciplinary and total execution metrics?
    • 6. How to visualize the scenario execution and results?
  • Monitoring the execution of a scenario
    • Basic monitoring using logs
    • Graphical monitoring using XDSMjs
    • Monitoring from a external platform using the observer design pattern
    • Monitoring using a Gantt chart

previous

Namespaces

next

How to deal with scenarios

This Page

  • Show Source

© Copyright 2025, IRT Saint Exupéry.