concatenater module¶
The concatenation of several input variables into a single one.
- class gemseo.disciplines.concatenater.Concatenater(input_variables, output_variable, input_coefficients=None)[source]
Bases:
MDODiscipline
Concatenate input variables into a single output variable.
These input variables can be scaled before concatenation.
Examples
>>> from gemseo import create_discipline >>> sellar_system_disc = create_discipline('SellarSystem') >>> constraint_names = ['c1', 'c2'] >>> output_name = ['c'] >>> concatenation_disc = create_discipline( ... 'Concatenater', constraint_names, output_name ... ) >>> disciplines = [sellar_system_disc, concatenation_disc] >>> chain = create_discipline('MDOChain', disciplines=disciplines) >>> print(chain.execute()) >>> print(chain.linearize(compute_all_jacobians=True))
Initialize self. See help(type(self)) for accurate signature.
- Parameters:
- cache: AbstractCache | None
The cache containing one or several executions of the discipline according to the cache policy.
- data_processor: DataProcessor
A tool to pre- and post-process discipline data.
- exec_for_lin: bool
Whether the last execution was due to a linearization.
- input_grammar: BaseGrammar
The input grammar.
- jac: dict[str, dict[str, ndarray]]
The Jacobians of the outputs wrt inputs.
The structure is
{output: {input: matrix}}
.
- name: str
The name of the discipline.
- output_grammar: BaseGrammar
The output grammar.
- re_exec_policy: ReExecutionPolicy
The policy to re-execute the same discipline.
- residual_variables: Mapping[str, str]
The output variables mapping to their inputs, to be considered as residuals; they shall be equal to zero.
- run_solves_residuals: bool
Whether the run method shall solve the residuals.