Note
Click here to download the full example code
Create a DOE Scenario¶
from __future__ import annotations
from gemseo.api import configure_logger
from gemseo.api import create_design_space
from gemseo.api import create_discipline
from gemseo.api import create_scenario
from gemseo.api import get_available_doe_algorithms
from gemseo.api import get_available_post_processings
configure_logger()
<RootLogger root (INFO)>
Let \((P)\) be a simple optimization problem:
In this example, we will see how to use GEMSEO to solve this problem \((P)\) by means of a Design Of Experiments (DOE)
Define the discipline¶
Firstly, by means of the create_discipline()
API function,
we create an MDODiscipline
of AnalyticDiscipline
type
from a Python function:
expressions = {"y": "x1+x2"}
discipline = create_discipline("AnalyticDiscipline", expressions=expressions)
Now, we want to minimize this MDODiscipline
over a design of experiments (DOE).
Define the design space¶
For that, by means of the create_design_space()
API function,
we define the DesignSpace
\([-5, 5]\times[-5, 5]\)
by using its DesignSpace.add_variable()
method.
design_space = create_design_space()
design_space.add_variable("x1", l_b=-5, u_b=5, var_type="integer")
design_space.add_variable("x2", l_b=-5, u_b=5, var_type="integer")
Define the DOE scenario¶
Then, by means of the create_scenario()
API function,
we define a DOEScenario
from the MDODiscipline
and the DesignSpace
defined above:
scenario = create_scenario(
discipline, "DisciplinaryOpt", "y", design_space, scenario_type="DOE"
)
Execute the DOE scenario¶
Lastly, we solve the OptimizationProblem
included in the
DOEScenario
defined above by minimizing the objective function
over a design of experiments included in the DesignSpace
.
Precisely, we choose a full factorial design of size \(11^2\):
scenario.execute({"algo": "fullfact", "n_samples": 11**2})
INFO - 15:59:04:
INFO - 15:59:04: *** Start DOEScenario execution ***
INFO - 15:59:04: DOEScenario
INFO - 15:59:04: Disciplines: AnalyticDiscipline
INFO - 15:59:04: MDO formulation: DisciplinaryOpt
INFO - 15:59:04: Optimization problem:
INFO - 15:59:04: minimize y(x1, x2)
INFO - 15:59:04: with respect to x1, x2
INFO - 15:59:04: over the design space:
INFO - 15:59:04: +------+-------------+-------+-------------+---------+
INFO - 15:59:04: | name | lower_bound | value | upper_bound | type |
INFO - 15:59:04: +------+-------------+-------+-------------+---------+
INFO - 15:59:04: | x1 | -5 | None | 5 | integer |
INFO - 15:59:04: | x2 | -5 | None | 5 | integer |
INFO - 15:59:04: +------+-------------+-------+-------------+---------+
INFO - 15:59:04: Solving optimization problem with algorithm fullfact:
INFO - 15:59:04: ... 0%| | 0/121 [00:00<?, ?it]
INFO - 15:59:04: ... 1%| | 1/121 [00:00<00:00, 367.89 it/sec, obj=-10]
INFO - 15:59:04: ... 2%|▏ | 2/121 [00:00<00:00, 598.59 it/sec, obj=-9]
INFO - 15:59:04: ... 2%|▏ | 3/121 [00:00<00:00, 755.87 it/sec, obj=-8]
INFO - 15:59:04: ... 3%|▎ | 4/121 [00:00<00:00, 876.92 it/sec, obj=-7]
INFO - 15:59:04: ... 4%|▍ | 5/121 [00:00<00:00, 971.49 it/sec, obj=-6]
INFO - 15:59:04: ... 5%|▍ | 6/121 [00:00<00:00, 1047.75 it/sec, obj=-5]
INFO - 15:59:04: ... 6%|▌ | 7/121 [00:00<00:00, 1106.30 it/sec, obj=-4]
INFO - 15:59:04: ... 7%|▋ | 8/121 [00:00<00:00, 1158.05 it/sec, obj=-3]
INFO - 15:59:04: ... 7%|▋ | 9/121 [00:00<00:00, 1198.64 it/sec, obj=-2]
INFO - 15:59:04: ... 8%|▊ | 10/121 [00:00<00:00, 1230.18 it/sec, obj=-1]
INFO - 15:59:04: ... 9%|▉ | 11/121 [00:00<00:00, 1261.82 it/sec, obj=0]
INFO - 15:59:04: ... 10%|▉ | 12/121 [00:00<00:00, 1290.56 it/sec, obj=-9]
INFO - 15:59:04: ... 11%|█ | 13/121 [00:00<00:00, 1314.70 it/sec, obj=-8]
INFO - 15:59:04: ... 12%|█▏ | 14/121 [00:00<00:00, 1337.29 it/sec, obj=-7]
INFO - 15:59:04: ... 12%|█▏ | 15/121 [00:00<00:00, 1357.58 it/sec, obj=-6]
INFO - 15:59:04: ... 13%|█▎ | 16/121 [00:00<00:00, 1369.40 it/sec, obj=-5]
INFO - 15:59:04: ... 14%|█▍ | 17/121 [00:00<00:00, 1382.41 it/sec, obj=-4]
INFO - 15:59:04: ... 15%|█▍ | 18/121 [00:00<00:00, 1397.69 it/sec, obj=-3]
INFO - 15:59:04: ... 16%|█▌ | 19/121 [00:00<00:00, 1411.80 it/sec, obj=-2]
INFO - 15:59:04: ... 17%|█▋ | 20/121 [00:00<00:00, 1423.00 it/sec, obj=-1]
INFO - 15:59:04: ... 17%|█▋ | 21/121 [00:00<00:00, 1434.95 it/sec, obj=0]
INFO - 15:59:04: ... 18%|█▊ | 22/121 [00:00<00:00, 1445.99 it/sec, obj=1]
INFO - 15:59:04: ... 19%|█▉ | 23/121 [00:00<00:00, 1456.84 it/sec, obj=-8]
INFO - 15:59:04: ... 20%|█▉ | 24/121 [00:00<00:00, 1463.19 it/sec, obj=-7]
INFO - 15:59:04: ... 21%|██ | 25/121 [00:00<00:00, 1471.93 it/sec, obj=-6]
INFO - 15:59:04: ... 21%|██▏ | 26/121 [00:00<00:00, 1480.58 it/sec, obj=-5]
INFO - 15:59:04: ... 22%|██▏ | 27/121 [00:00<00:00, 1487.15 it/sec, obj=-4]
INFO - 15:59:04: ... 23%|██▎ | 28/121 [00:00<00:00, 1494.99 it/sec, obj=-3]
INFO - 15:59:04: ... 24%|██▍ | 29/121 [00:00<00:00, 1502.31 it/sec, obj=-2]
INFO - 15:59:04: ... 25%|██▍ | 30/121 [00:00<00:00, 1507.21 it/sec, obj=-1]
INFO - 15:59:04: ... 26%|██▌ | 31/121 [00:00<00:00, 1512.87 it/sec, obj=0]
INFO - 15:59:04: ... 26%|██▋ | 32/121 [00:00<00:00, 1518.99 it/sec, obj=1]
INFO - 15:59:04: ... 27%|██▋ | 33/121 [00:00<00:00, 1525.00 it/sec, obj=2]
INFO - 15:59:04: ... 28%|██▊ | 34/121 [00:00<00:00, 1529.18 it/sec, obj=-7]
INFO - 15:59:04: ... 29%|██▉ | 35/121 [00:00<00:00, 1533.98 it/sec, obj=-6]
INFO - 15:59:04: ... 30%|██▉ | 36/121 [00:00<00:00, 1538.55 it/sec, obj=-5]
INFO - 15:59:04: ... 31%|███ | 37/121 [00:00<00:00, 1541.49 it/sec, obj=-4]
INFO - 15:59:04: ... 31%|███▏ | 38/121 [00:00<00:00, 1545.61 it/sec, obj=-3]
INFO - 15:59:04: ... 32%|███▏ | 39/121 [00:00<00:00, 1549.81 it/sec, obj=-2]
INFO - 15:59:04: ... 33%|███▎ | 40/121 [00:00<00:00, 1552.93 it/sec, obj=-1]
INFO - 15:59:04: ... 34%|███▍ | 41/121 [00:00<00:00, 1556.37 it/sec, obj=0]
INFO - 15:59:04: ... 35%|███▍ | 42/121 [00:00<00:00, 1560.09 it/sec, obj=1]
INFO - 15:59:04: ... 36%|███▌ | 43/121 [00:00<00:00, 1563.72 it/sec, obj=2]
INFO - 15:59:04: ... 36%|███▋ | 44/121 [00:00<00:00, 1565.90 it/sec, obj=3]
INFO - 15:59:04: ... 37%|███▋ | 45/121 [00:00<00:00, 1569.05 it/sec, obj=-6]
INFO - 15:59:04: ... 38%|███▊ | 46/121 [00:00<00:00, 1572.19 it/sec, obj=-5]
INFO - 15:59:04: ... 39%|███▉ | 47/121 [00:00<00:00, 1574.29 it/sec, obj=-4]
INFO - 15:59:04: ... 40%|███▉ | 48/121 [00:00<00:00, 1577.18 it/sec, obj=-3]
INFO - 15:59:04: ... 40%|████ | 49/121 [00:00<00:00, 1580.24 it/sec, obj=-2]
INFO - 15:59:04: ... 41%|████▏ | 50/121 [00:00<00:00, 1583.08 it/sec, obj=-1]
INFO - 15:59:04: ... 42%|████▏ | 51/121 [00:00<00:00, 1584.41 it/sec, obj=0]
INFO - 15:59:04: ... 43%|████▎ | 52/121 [00:00<00:00, 1586.96 it/sec, obj=1]
INFO - 15:59:04: ... 44%|████▍ | 53/121 [00:00<00:00, 1589.54 it/sec, obj=2]
INFO - 15:59:04: ... 45%|████▍ | 54/121 [00:00<00:00, 1591.36 it/sec, obj=3]
INFO - 15:59:04: ... 45%|████▌ | 55/121 [00:00<00:00, 1593.55 it/sec, obj=4]
INFO - 15:59:04: ... 46%|████▋ | 56/121 [00:00<00:00, 1595.81 it/sec, obj=-5]
INFO - 15:59:04: ... 47%|████▋ | 57/121 [00:00<00:00, 1598.35 it/sec, obj=-4]
INFO - 15:59:04: ... 48%|████▊ | 58/121 [00:00<00:00, 1599.05 it/sec, obj=-3]
INFO - 15:59:04: ... 49%|████▉ | 59/121 [00:00<00:00, 1600.99 it/sec, obj=-2]
INFO - 15:59:04: ... 50%|████▉ | 60/121 [00:00<00:00, 1603.06 it/sec, obj=-1]
INFO - 15:59:04: ... 50%|█████ | 61/121 [00:00<00:00, 1604.17 it/sec, obj=0]
INFO - 15:59:04: ... 51%|█████ | 62/121 [00:00<00:00, 1605.96 it/sec, obj=1]
INFO - 15:59:04: ... 52%|█████▏ | 63/121 [00:00<00:00, 1608.01 it/sec, obj=2]
INFO - 15:59:04: ... 53%|█████▎ | 64/121 [00:00<00:00, 1609.98 it/sec, obj=3]
INFO - 15:59:04: ... 54%|█████▎ | 65/121 [00:00<00:00, 1610.75 it/sec, obj=4]
INFO - 15:59:04: ... 55%|█████▍ | 66/121 [00:00<00:00, 1612.39 it/sec, obj=5]
INFO - 15:59:04: ... 55%|█████▌ | 67/121 [00:00<00:00, 1613.91 it/sec, obj=-4]
INFO - 15:59:04: ... 56%|█████▌ | 68/121 [00:00<00:00, 1614.95 it/sec, obj=-3]
INFO - 15:59:04: ... 57%|█████▋ | 69/121 [00:00<00:00, 1616.51 it/sec, obj=-2]
INFO - 15:59:04: ... 58%|█████▊ | 70/121 [00:00<00:00, 1618.01 it/sec, obj=-1]
INFO - 15:59:04: ... 59%|█████▊ | 71/121 [00:00<00:00, 1613.73 it/sec, obj=0]
INFO - 15:59:04: ... 60%|█████▉ | 72/121 [00:00<00:00, 1614.95 it/sec, obj=1]
INFO - 15:59:04: ... 60%|██████ | 73/121 [00:00<00:00, 1616.42 it/sec, obj=2]
INFO - 15:59:04: ... 61%|██████ | 74/121 [00:00<00:00, 1617.41 it/sec, obj=3]
INFO - 15:59:04: ... 62%|██████▏ | 75/121 [00:00<00:00, 1618.48 it/sec, obj=4]
INFO - 15:59:04: ... 63%|██████▎ | 76/121 [00:00<00:00, 1619.74 it/sec, obj=5]
INFO - 15:59:04: ... 64%|██████▎ | 77/121 [00:00<00:00, 1620.98 it/sec, obj=6]
INFO - 15:59:04: ... 64%|██████▍ | 78/121 [00:00<00:00, 1621.25 it/sec, obj=-3]
INFO - 15:59:04: ... 65%|██████▌ | 79/121 [00:00<00:00, 1622.33 it/sec, obj=-2]
INFO - 15:59:04: ... 66%|██████▌ | 80/121 [00:00<00:00, 1623.65 it/sec, obj=-1]
INFO - 15:59:04: ... 67%|██████▋ | 81/121 [00:00<00:00, 1624.21 it/sec, obj=0]
INFO - 15:59:04: ... 68%|██████▊ | 82/121 [00:00<00:00, 1625.29 it/sec, obj=1]
INFO - 15:59:04: ... 69%|██████▊ | 83/121 [00:00<00:00, 1626.34 it/sec, obj=2]
INFO - 15:59:04: ... 69%|██████▉ | 84/121 [00:00<00:00, 1627.53 it/sec, obj=3]
INFO - 15:59:04: ... 70%|███████ | 85/121 [00:00<00:00, 1627.89 it/sec, obj=4]
INFO - 15:59:04: ... 71%|███████ | 86/121 [00:00<00:00, 1628.83 it/sec, obj=5]
INFO - 15:59:04: ... 72%|███████▏ | 87/121 [00:00<00:00, 1629.99 it/sec, obj=6]
INFO - 15:59:04: ... 73%|███████▎ | 88/121 [00:00<00:00, 1630.51 it/sec, obj=7]
INFO - 15:59:04: ... 74%|███████▎ | 89/121 [00:00<00:00, 1631.38 it/sec, obj=-2]
INFO - 15:59:04: ... 74%|███████▍ | 90/121 [00:00<00:00, 1632.44 it/sec, obj=-1]
INFO - 15:59:04: ... 75%|███████▌ | 91/121 [00:00<00:00, 1633.51 it/sec, obj=0]
INFO - 15:59:04: ... 76%|███████▌ | 92/121 [00:00<00:00, 1633.67 it/sec, obj=1]
INFO - 15:59:04: ... 77%|███████▋ | 93/121 [00:00<00:00, 1634.48 it/sec, obj=2]
INFO - 15:59:04: ... 78%|███████▊ | 94/121 [00:00<00:00, 1635.29 it/sec, obj=3]
INFO - 15:59:04: ... 79%|███████▊ | 95/121 [00:00<00:00, 1635.72 it/sec, obj=4]
INFO - 15:59:04: ... 79%|███████▉ | 96/121 [00:00<00:00, 1636.54 it/sec, obj=5]
INFO - 15:59:04: ... 80%|████████ | 97/121 [00:00<00:00, 1637.36 it/sec, obj=6]
INFO - 15:59:04: ... 81%|████████ | 98/121 [00:00<00:00, 1638.25 it/sec, obj=7]
INFO - 15:59:04: ... 82%|████████▏ | 99/121 [00:00<00:00, 1638.21 it/sec, obj=8]
INFO - 15:59:04: ... 83%|████████▎ | 100/121 [00:00<00:00, 1638.94 it/sec, obj=-1]
INFO - 15:59:04: ... 83%|████████▎ | 101/121 [00:00<00:00, 1639.75 it/sec, obj=0]
INFO - 15:59:04: ... 84%|████████▍ | 102/121 [00:00<00:00, 1640.11 it/sec, obj=1]
INFO - 15:59:04: ... 85%|████████▌ | 103/121 [00:00<00:00, 1640.83 it/sec, obj=2]
INFO - 15:59:04: ... 86%|████████▌ | 104/121 [00:00<00:00, 1641.53 it/sec, obj=3]
INFO - 15:59:04: ... 87%|████████▋ | 105/121 [00:00<00:00, 1641.57 it/sec, obj=4]
INFO - 15:59:04: ... 88%|████████▊ | 106/121 [00:00<00:00, 1642.24 it/sec, obj=5]
INFO - 15:59:04: ... 88%|████████▊ | 107/121 [00:00<00:00, 1642.90 it/sec, obj=6]
INFO - 15:59:04: ... 89%|████████▉ | 108/121 [00:00<00:00, 1643.61 it/sec, obj=7]
INFO - 15:59:04: ... 90%|█████████ | 109/121 [00:00<00:00, 1642.60 it/sec, obj=8]
INFO - 15:59:04: ... 91%|█████████ | 110/121 [00:00<00:00, 1643.09 it/sec, obj=9]
INFO - 15:59:04: ... 92%|█████████▏| 111/121 [00:00<00:00, 1643.76 it/sec, obj=0]
INFO - 15:59:04: ... 93%|█████████▎| 112/121 [00:00<00:00, 1643.67 it/sec, obj=1]
INFO - 15:59:04: ... 93%|█████████▎| 113/121 [00:00<00:00, 1644.07 it/sec, obj=2]
INFO - 15:59:04: ... 94%|█████████▍| 114/121 [00:00<00:00, 1644.79 it/sec, obj=3]
INFO - 15:59:04: ... 95%|█████████▌| 115/121 [00:00<00:00, 1645.09 it/sec, obj=4]
INFO - 15:59:04: ... 96%|█████████▌| 116/121 [00:00<00:00, 1645.65 it/sec, obj=5]
INFO - 15:59:04: ... 97%|█████████▋| 117/121 [00:00<00:00, 1646.29 it/sec, obj=6]
INFO - 15:59:04: ... 98%|█████████▊| 118/121 [00:00<00:00, 1646.95 it/sec, obj=7]
INFO - 15:59:04: ... 98%|█████████▊| 119/121 [00:00<00:00, 1646.70 it/sec, obj=8]
INFO - 15:59:04: ... 99%|█████████▉| 120/121 [00:00<00:00, 1645.00 it/sec, obj=9]
INFO - 15:59:04: ... 100%|██████████| 121/121 [00:00<00:00, 1644.82 it/sec, obj=10]
INFO - 15:59:04: Optimization result:
INFO - 15:59:04: Optimizer info:
INFO - 15:59:04: Status: None
INFO - 15:59:04: Message: None
INFO - 15:59:04: Number of calls to the objective function by the optimizer: 121
INFO - 15:59:04: Solution:
INFO - 15:59:04: Objective: -10.0
INFO - 15:59:04: Design space:
INFO - 15:59:04: +------+-------------+-------+-------------+---------+
INFO - 15:59:04: | name | lower_bound | value | upper_bound | type |
INFO - 15:59:04: +------+-------------+-------+-------------+---------+
INFO - 15:59:04: | x1 | -5 | -5 | 5 | integer |
INFO - 15:59:04: | x2 | -5 | -5 | 5 | integer |
INFO - 15:59:04: +------+-------------+-------+-------------+---------+
INFO - 15:59:04: *** End DOEScenario execution (time: 0:00:00.082976) ***
{'eval_jac': False, 'algo': 'fullfact', 'n_samples': 121}
The optimum results can be found in the execution log. It is also possible to
extract them by invoking the Scenario.get_optimum()
method. It
returns a dictionary containing the optimum results for the
scenario under consideration:
opt_results = scenario.get_optimum()
print(
"The solution of P is (x*,f(x*)) = ({}, {})".format(
opt_results.x_opt, opt_results.f_opt
),
)
The solution of P is (x*,f(x*)) = ([-5. -5.], -10.0)
Available DOE algorithms¶
In order to get the list of available DOE algorithms, use:
algo_list = get_available_doe_algorithms()
print(f"Available algorithms: {algo_list}")
Available algorithms: ['CustomDOE', 'DiagonalDOE', 'OT_SOBOL', 'OT_RANDOM', 'OT_HASELGROVE', 'OT_REVERSE_HALTON', 'OT_HALTON', 'OT_FAURE', 'OT_MONTE_CARLO', 'OT_FACTORIAL', 'OT_COMPOSITE', 'OT_AXIAL', 'OT_OPT_LHS', 'OT_LHS', 'OT_LHSC', 'OT_FULLFACT', 'OT_SOBOL_INDICES', 'fullfact', 'ff2n', 'pbdesign', 'bbdesign', 'ccdesign', 'lhs']
Available post-processing¶
In order to get the list of available post-processing algorithms, use:
post_list = get_available_post_processings()
print(f"Available algorithms: {post_list}")
Available algorithms: ['BasicHistory', 'Compromise', 'ConstraintsHistory', 'Correlations', 'GradientSensitivity', 'HighTradeOff', 'KMeans', 'MultiObjectiveDiagram', 'ObjConstrHist', 'OptHistoryView', 'ParallelCoordinates', 'ParetoFront', 'Petal', 'QuadApprox', 'Radar', 'RadarChart', 'Robustness', 'SOM', 'ScatterPareto', 'ScatterPlotMatrix', 'VariableInfluence']
You can also look at the examples:
Total running time of the script: ( 0 minutes 0.100 seconds)