gemseo.uncertainty.distributions.scipy.distribution module#
The interface to SciPy-based probability distributions.
- class SPDistribution(interfaced_distribution='uniform', parameters=mappingproxy({}), standard_parameters=mappingproxy({}))[source]#
Bases:
BaseDistribution
[float
,Mapping
[str
,Any
],rv_continuous_frozen
],ScalarDistributionMixin
A SciPy-based probability distribution.
Warning
The distribution parameters must be provided according to the signature of the scipy classes. Access the scipy documentation.
Examples
>>> from gemseo.uncertainty.distributions.scipy.distribution import ( ... SPDistribution, ... ) >>> distribution = SPDistribution("expon", {"loc": 3, "scale": 1 / 2.0}) >>> print(distribution) expon(loc=3, scale=0.5)
Initialize self. See help(type(self)) for accurate signature.
- Parameters:
interfaced_distribution (str) --
The name of the probability distribution, typically the name of a class wrapped from an external library, such as
"Normal"
for OpenTURNS or"norm"
for SciPy.By default it is set to "uniform".
parameters (StrKeyMapping) --
The parameters of the probability distribution.
By default it is set to {}.
standard_parameters (StandardParametersType) --
The parameters of the probability distribution used for string representation only (use
parameters
for computation). If empty, useparameters
instead. For instance, let us consider the interfaced SciPy distribution"uniform"
. Then, the string representation ofSPDistribution("uniform", parameters, 1, {"min": 1, "max": 3})
withparameters={"loc": 1, "scale": 2}
is"uniform(max=3, min=1)"
while the string representation ofSPDistribution("uniform", parameters)
is"uniform(loc=1, scale=2)"
.By default it is set to {}.
- JOINT_DISTRIBUTION_CLASS#
alias of
SPJointDistribution