Built-in datasets¶
Dataset factory¶
This module contains a factory
to instantiate a Dataset
from its class name.
The class can be internal to GEMSEO or located in an external module whose path
is provided to the constructor. It also provides a list of available cache
types and allows you to test if a cache type is available.
Classes:
This factory instantiates a |
- class gemseo.problems.dataset.factory.DatasetFactory[source]
This factory instantiates a
Dataset
from its class name.The class can be internal to GEMSEO or located in an external module whose path is provided to the constructor.
Initializes the factory: scans the directories to search for subclasses of Dataset.
Searches in “GEMSEO_PATH” and gemseo.mlearning.p_datasets
Methods:
create
(dataset, **options)Create a dataset.
is_available
(dataset)Checks the availability of a dataset.
Attributes:
Lists the available datasets.
- create(dataset, **options)[source]
Create a dataset.
- Parameters
dataset (str) – name of the dataset (its classname).
options – additional options specific
- Returns
dataset
- Return type
- property datasets
Lists the available datasets.
- Returns
the list of datasets.
- Return type
list(str)
- is_available(dataset)[source]
Checks the availability of a dataset.
- Parameters
dataset (str) – name of the dataset (its class name).
- Returns
True if the dataset is available.
- Return type
bool
Burgers dataset¶
This Dataset
contains solutions to the Burgers’ equation with
periodic boundary conditions on the interval \([0, 2\pi]\) for different
time steps:
An analytical expression can be obtained for the solution, using the Cole-Hopf transform:
where \(\phi\) is solution to the heat equation \(\phi_t = \nu \phi_{xx}\).
This Dataset
is based on a full-factorial
design of experiments. Each sample corresponds to a given time step \(t\),
while each feature corresponds to a given spatial point \(x\).
More information about Burgers’ equation
Classes:
|
Burgers dataset parametrization. |
A software integrated in the workflow. |
- class gemseo.problems.dataset.burgers.BurgersDataset(name='Burgers', by_group=True, n_samples=30, n_x=501, fluid_viscosity=0.1, categorize=True)[source]
Burgers dataset parametrization.
Constructor.
- Parameters
name (str) –
name of the dataset.
By default it is set to Burgers.
by_group (bool) –
if True, store the data by group. Otherwise, store them by variables. Default: True.
By default it is set to True.
n_samples (int) –
number of samples. Default: 30.
By default it is set to 30.
n_x (int) –
number of spatial points. Default: 501.
By default it is set to 501.
fluid_viscosity (float) –
fluid viscosity. Default: 0.1.
By default it is set to 0.1.
categorize (bool) –
distinguish between the different groups of variables. Default: True.
By default it is set to True.
- Parma bool opt_naming
use an optimization naming. Default: True.
Methods:
add_group
(group, data[, variables, sizes, ...])Add data related to a group.
add_variable
(name, data[, group, cache_as_input])Add data related to a variable.
compare
(value_1, logical_operator, value_2)Compare either a variable and a value or a variable and another variable.
export_to_cache
([inputs, outputs, ...])Export the dataset to a cache.
export_to_dataframe
([copy])Export the dataset to a pandas Dataframe.
find
(comparison)Find the entries for which a comparison is satisfied.
get_all_data
([by_group, as_dict])Get all the data stored in the dataset.
Return the available plot methods.
get_data_by_group
(group[, as_dict])Get the data for a specific group name.
get_data_by_names
(names[, as_dict])Get the data for specific names of variables.
get_group
(variable_name)Get the name of the group that contains a variable.
get_names
(group_name)Get the names of the variables of a group.
get_normalized_dataset
([excluded_variables, ...])Get a normalized copy of the dataset.
is_empty
()Check if the dataset is empty.
is_group
(name)Check if a name is a group name.
is_nan
()Check if an entry contains NaN.
is_variable
(name)Check if a name is a variable name.
n_variables_by_group
(group)The number of variables for a group.
plot
(name[, show, save])Plot the dataset from a
DatasetPlot
.remove
(entries)Remove entries.
set_from_array
(data[, variables, sizes, ...])Set the dataset from an array.
set_from_file
(filename[, variables, sizes, ...])Set the dataset from a file.
set_metadata
(name, value)Set a metadata attribute.
Attributes:
The names of the columns of the dataset.
The sorted names of the groups of variables.
The number of samples.
The number of variables.
The names of the rows.
The sorted names of the variables.
- add_group(group, data, variables=None, sizes=None, pattern=None, cache_as_input=True)
Add data related to a group.
- Parameters
group (str) – The name of the group of data to be added.
data (numpy.ndarray) – The data to be added.
variables (Optional[List[str]]) –
The names of the variables. If None, use default names based on a pattern.
By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
pattern (Optional[str]) –
The name of the variable to be used as a pattern when variables is None. If None, use the
Dataset.DEFAULT_NAMES
for this group if it exists. Otherwise, use the group name.By default it is set to None.
cache_as_input (bool) –
If True, cache these data as inputs when the cache is exported to a cache.
By default it is set to True.
- Return type
str
- add_variable(name, data, group='parameters', cache_as_input=True)
Add data related to a variable.
- Parameters
name (str) – The name of the variable to be stored.
data (numpy.ndarray) – The data to be stored.
group (str) –
The name of the group related to this variable.
By default it is set to parameters.
cache_as_input (bool) –
If True, cache these data as inputs when the cache is exported to a cache.
By default it is set to True.
- Return type
None
- property columns_names
The names of the columns of the dataset.
- compare(value_1, logical_operator, value_2, component_1=0, component_2=0)
Compare either a variable and a value or a variable and another variable.
- Parameters
value_1 (Union[str, float]) – The first value, either a variable name or a numeric value.
logical_operator (str) – The logical operator, either “==”, “<”, “<=”, “>” or “>=”.
value_2 (Union[str, float]) – The second value, either a variable name or a numeric value.
component_1 (int) –
If value_1 is a variable name, component_1 corresponds to its component used in the comparison.
By default it is set to 0.
component_2 (int) –
If value_2 is a variable name, component_2 corresponds to its component used in the comparison.
By default it is set to 0.
- Returns
Whether the comparison is valid for the different entries.
- Return type
numpy.ndarray
- export_to_cache(inputs=None, outputs=None, cache_type='MemoryFullCache', cache_hdf_file=None, cache_hdf_node_name=None, **options)
Export the dataset to a cache.
- Parameters
inputs (Optional[Iterable[str]]) –
The names of the inputs to cache. If None, use all inputs.
By default it is set to None.
outputs (Optional[Iterable[str]]) –
The names of the outputs to cache. If None, use all outputs.
By default it is set to None.
cache_type (str) –
The type of cache to use.
By default it is set to MemoryFullCache.
cache_hdf_file (Optional[str]) –
The name of the HDF file to store the data. Required if the type of the cache is ‘HDF5Cache’.
By default it is set to None.
cache_hdf_node_name (Optional[str]) –
The name of the HDF node to store the discipline. If None, use the name of the dataset.
By default it is set to None.
- Returns
A cache containing the dataset.
- Return type
- export_to_dataframe(copy=True)
Export the dataset to a pandas Dataframe.
- Parameters
copy (bool) –
If True, copy data. Otherwise, use reference.
By default it is set to True.
- Returns
A pandas DataFrame containing the dataset.
- Return type
DataFrame
- static find(comparison)
Find the entries for which a comparison is satisfied.
This search uses a boolean 1D array whose length is equal to the length of the dataset.
- Parameters
comparison (numpy.ndarray) – A boolean vector whose length is equal to the number of samples.
- Returns
The indices of the entries for which the comparison is satisfied.
- Return type
List[int]
- get_all_data(by_group=True, as_dict=False)
Get all the data stored in the dataset.
The data can be returned either as a dictionary indexed by the names of the variables, or as an array concatenating them, accompanied with the names and sizes of the variables.
The data can also classified by groups of variables.
- Parameters
by_group –
If True, sort the data by group.
By default it is set to True.
as_dict –
If True, return the data as a dictionary.
By default it is set to False.
- Returns
All the data stored in the dataset.
- Return type
Union[Dict[str, Union[Dict[str, numpy.ndarray], numpy.ndarray]], Tuple[Union[numpy.ndarray, Dict[str, numpy.ndarray]], List[str], Dict[str, int]]]
- get_available_plots()
Return the available plot methods.
- Return type
List[str]
- get_data_by_group(group, as_dict=False)
Get the data for a specific group name.
- Parameters
group (str) – The name of the group.
as_dict (bool) –
If True, return values as dictionary.
By default it is set to False.
- Returns
The data related to the group.
- Return type
Union[numpy.ndarray, Dict[str, numpy.ndarray]]
- get_data_by_names(names, as_dict=True)
Get the data for specific names of variables.
- Parameters
names (Union[str, Iterable[str]]) – The names of the variables.
as_dict (bool) –
If True, return values as dictionary.
By default it is set to True.
- Returns
The data related to the variables.
- Return type
Union[numpy.ndarray, Dict[str, numpy.ndarray]]
- get_group(variable_name)
Get the name of the group that contains a variable.
- Parameters
variable_name (str) – The name of the variable.
- Returns
The group to which the variable belongs.
- Return type
str
- get_names(group_name)
Get the names of the variables of a group.
- Parameters
group_name (str) – The name of the group.
- Returns
The names of the variables of the group.
- Return type
List[str]
- get_normalized_dataset(excluded_variables=None, excluded_groups=None)
Get a normalized copy of the dataset.
- Parameters
excluded_variables (Optional[Sequence[str]]) –
The names of the variables not to be normalized. If None, normalize all the variables.
By default it is set to None.
excluded_groups (Optional[Sequence[str]]) –
The names of the groups not to be normalized. If None, normalize all the groups.
By default it is set to None.
- Returns
A normalized dataset.
- Return type
- property groups
The sorted names of the groups of variables.
- is_empty()
Check if the dataset is empty.
- Returns
Whether the dataset is empty.
- Return type
bool
- is_group(name)
Check if a name is a group name.
- Parameters
name (str) – A name of a group.
- Returns
Whether the name is a group name.
- Return type
bool
- is_nan()
Check if an entry contains NaN.
- Returns
Whether any entries is NaN or not.
- Return type
numpy.ndarray
- is_variable(name)
Check if a name is a variable name.
- Parameters
name (str) – A name of a variable.
- Returns
Whether the name is a variable name.
- Return type
bool
- property n_samples
The number of samples.
- property n_variables
The number of variables.
- n_variables_by_group(group)
The number of variables for a group.
- Parameters
group (str) – The name of a group.
- Returns
The group dimension.
- Return type
int
- plot(name, show=True, save=False, **options)
Plot the dataset from a
DatasetPlot
.See
Dataset.get_available_plots()
- Parameters
name (str) – The name of the post-processing, which is the name of a class inheriting from
DatasetPlot
.show (bool) –
If True, display the figure.
By default it is set to True.
save (bool) –
If True, save the figure.
By default it is set to False.
options – The options for the post-processing.
- Return type
None
- remove(entries)
Remove entries.
- Parameters
entries (Union[List[int], numpy.ndarray]) – The entries to be removed, either indices or a boolean 1D array whose length is equal to the length of the dataset and elements to delete are coded True.
- Return type
None
- property row_names
The names of the rows.
- set_from_array(data, variables=None, sizes=None, groups=None, default_name=None)
Set the dataset from an array.
- Parameters
data (numpy.ndarray) – The data to be stored.
variables (Optional[List[str]]) –
The names of the variables. If None, use one default name per column of the array based on the pattern ‘default_name’.
By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
groups (Optional[Dict[str, str]]) –
The groups of the variables. If None, use
Dataset.DEFAULT_GROUP
for all the variables.By default it is set to None.
default_name (Optional[str]) –
The name of the variable to be used as a pattern when variables is None. If None, use the
Dataset.DEFAULT_NAMES
for this group if it exists. Otherwise, use the group name.By default it is set to None.
- Return type
None
- set_from_file(filename, variables=None, sizes=None, groups=None, delimiter=',', header=True)
Set the dataset from a file.
- Parameters
filename (str) – The name of the file containing the data.
variables (Optional[List[str]]) –
The names of the variables. If None and header is True, read the names from the first line of the file. If None and header is False, use default names based on the patterns the
Dataset.DEFAULT_NAMES
associated with the different groups.By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
groups (Optional[Dict[str, str]]) –
The groups of the variables. If None, use
Dataset.DEFAULT_GROUP
for all the variables.By default it is set to None.
delimiter (str) –
The field delimiter.
By default it is set to ,.
header (bool) –
If True, read the names of the variables on the first line of the file.
By default it is set to True.
- Return type
None
- set_metadata(name, value)
Set a metadata attribute.
- Parameters
name (str) – The name of the metadata attribute.
value (Any) – The value of the metadata attribute.
- Return type
None
- property variables
The sorted names of the variables.
- class gemseo.problems.dataset.burgers.BurgersDiscipline[source]
A software integrated in the workflow.
The inputs and outputs are defined in a grammar, which can be either a SimpleGrammar or a JSONGrammar, or your own which derives from the Grammar abstract class.
To be used, use a subclass and implement the _run method which defined the execution of the software. Typically, in the _run method, get the inputs from the input grammar, call your software, and write the outputs to the output grammar.
The JSONGrammar files are automatically detected when in the same folder as your subclass module and named “CLASSNAME_input.json” use
auto_detect_grammar_files=True
to activate this option.- input_grammar
The input grammar.
- Type
- output_grammar
The output grammar.
- Type
- grammar_type
The type of grammar to be used for inputs and outputs declaration.
- Type
str
- comp_dir
The path to the directory of the discipline module file if any.
- Type
str
- data_processor
A tool to pre- and post-process discipline data.
- Type
- re_exec_policy
The policy to re-execute the same discipline.
- Type
str
- residual_variables
The output variables to be considered as residuals; they shall be equal to zero.
- Type
List[str]
- jac
The Jacobians of the outputs wrt inputs of the form
{output: {input: matrix}}
.- Type
Dict[str, Dict[str, ndarray]]
- exec_for_lin
Whether the last execution was due to a linearization.
- Type
bool
- name
The name of the discipline.
- Type
str
- cache
The cache containing one or several executions of the discipline according to the cache policy.
- Type
- local_data
The last input and output data.
- Type
Dict[str, Any]
Methods:
Activate the time stamps.
add_differentiated_inputs
([inputs])Add inputs against which to differentiate the outputs.
add_differentiated_outputs
([outputs])Add outputs to be differentiated.
add_status_observer
(obs)Add an observer for the status.
auto_get_grammar_file
([is_input, name, comp_dir])Use a naming convention to associate a grammar file to a discipline.
check_input_data
(input_data[, raise_exception])Check the input data validity.
check_jacobian
([input_data, derr_approx, ...])Check if the analytical Jacobian is correct with respect to a reference one.
check_output_data
([raise_exception])Check the output data validity.
Deactivate the time stamps.
deserialize
(in_file)Deserialize a discipline from a file.
execute
([input_data])Execute the discipline.
Return the local input data as a list.
Return the local output data as a list.
Define the names of the attributes to be serialized.
get_data_list_from_dict
(keys, data_dict)Filter the dict from a list of keys or a single key.
Return the expected data exchange sequence.
Return the expected execution sequence.
Return the local input data as a dictionary.
Return the names of the input variables.
Return the names of the input and output variables.
Return the local output data as a large NumPy array.
get_inputs_by_name
(data_names)Return the local data associated with input variables.
get_local_data_by_name
(data_names)Return the local data of the discipline associated with variables names.
Return the local output data as a dictionary.
Return the names of the output variables.
Return the local input data as a large NumPy array.
get_outputs_by_name
(data_names)Return the local data associated with output variables.
Return the sub-disciplines if any.
is_all_inputs_existing
(data_names)Test if several variables are discipline inputs.
is_all_outputs_existing
(data_names)Test if several variables are discipline outputs.
is_input_existing
(data_name)Test if a variable is a discipline input.
is_output_existing
(data_name)Test if a variable is a discipline output.
Whether the discipline is a scenario.
linearize
([input_data, force_all, force_no_exec])Execute the linearized version of the code.
Notify all status observers that the status has changed.
Remove an observer for the status.
Set all the statuses to
PENDING
.serialize
(out_file)Serialize the discipline and store it in a file.
set_cache_policy
([cache_type, ...])Set the type of cache to use and the tolerance level.
set_disciplines_statuses
(status)Set the sub-disciplines statuses.
set_jacobian_approximation
([...])Set the Jacobian approximation method.
set_optimal_fd_step
([outputs, inputs, ...])Compute the optimal finite-difference step.
store_local_data
(**kwargs)Store discipline data in local data.
Attributes:
The cache input tolerance.
The default inputs.
The cumulated execution time of the discipline.
The grammar type.
The linearization mode among
LINEARIZE_MODE_LIST
.The number of times the discipline was executed.
The number of times the discipline was linearized.
The status of the discipline.
- classmethod activate_time_stamps()
Activate the time stamps.
For storing start and end times of execution and linearizations.
- Return type
None
- add_differentiated_inputs(inputs=None)
Add inputs against which to differentiate the outputs.
This method updates
_differentiated_inputs
withinputs
.- Parameters
inputs (Optional[Iterable[str]]) –
The input variables against which to differentiate the outputs. If None, all the inputs of the discipline are used.
By default it is set to None.
- Raises
ValueError – When the inputs wrt which differentiate the discipline are not inputs of the latter.
- Return type
None
- add_differentiated_outputs(outputs=None)
Add outputs to be differentiated.
This method updates
_differentiated_outputs
withoutputs
.- Parameters
outputs (Optional[Iterable[str]]) –
The output variables to be differentiated. If None, all the outputs of the discipline are used.
By default it is set to None.
- Raises
ValueError – When the outputs to differentiate are not discipline outputs.
- Return type
None
- add_status_observer(obs)
Add an observer for the status.
Add an observer for the status to be notified when self changes of status.
- Parameters
obs (Any) – The observer to add.
- Return type
None
- auto_get_grammar_file(is_input=True, name=None, comp_dir=None)
Use a naming convention to associate a grammar file to a discipline.
This method searches in a directory for either an input grammar file named
name + "_input.json"
or an output grammar file named``name + “_output.json”``.- Parameters
is_input (bool) –
If True, autodetect the input grammar file; otherwise, autodetect the output grammar file.
By default it is set to True.
name (Optional[str]) –
The name to be searched in the file names. If None, use the
name
name of the discipline.By default it is set to None.
comp_dir (Optional[Union[str, pathlib.Path]]) –
The directory in which to search the grammar file. If None, use
comp_dir
.By default it is set to None.
- Returns
The grammar file path.
- Return type
pathlib.Path
- property cache_tol
The cache input tolerance.
This is the tolerance for equality of the inputs in the cache. If norm(stored_input_data-input_data) <= cache_tol * norm(stored_input_data), the cached data for
stored_input_data
is returned when callingself.execute(input_data)
.
- check_input_data(input_data, raise_exception=True)
Check the input data validity.
- Parameters
input_data (Dict[str, Any]) – The input data needed to execute the discipline according to the discipline input grammar.
raise_exception (bool) –
By default it is set to True.
- Return type
None
- check_jacobian(input_data=None, derr_approx='finite_differences', step=1e-07, threshold=1e-08, linearization_mode='auto', inputs=None, outputs=None, parallel=False, n_processes=2, use_threading=False, wait_time_between_fork=0, auto_set_step=False, plot_result=False, file_path='jacobian_errors.pdf', show=False, figsize_x=10, figsize_y=10, reference_jacobian_path=None, save_reference_jacobian=False, indices=None)
Check if the analytical Jacobian is correct with respect to a reference one.
If reference_jacobian_path is not None and save_reference_jacobian is True, compute the reference Jacobian with the approximation method and save it in reference_jacobian_path.
If reference_jacobian_path is not None and save_reference_jacobian is False, do not compute the reference Jacobian but read it from reference_jacobian_path.
If reference_jacobian_path is None, compute the reference Jacobian without saving it.
- Parameters
input_data –
The input data needed to execute the discipline according to the discipline input grammar. If None, use the
default_inputs
.By default it is set to None.
derr_approx –
The approximation method, either “complex_step” or “finite_differences”.
By default it is set to finite_differences.
threshold –
The acceptance threshold for the Jacobian error.
By default it is set to 1e-08.
linearization_mode –
the mode of linearization: direct, adjoint or automated switch depending on dimensions of inputs and outputs (Default value = ‘auto’)
By default it is set to auto.
inputs –
The names of the inputs wrt which to differentiate the outputs.
By default it is set to None.
outputs –
The names of the outputs to be differentiated.
By default it is set to None.
step –
The differentiation step.
By default it is set to 1e-07.
parallel –
Whether to differentiate the discipline in parallel.
By default it is set to False.
n_processes –
The maximum number of processors on which to run.
By default it is set to 2.
use_threading –
Whether to use threads instead of processes to parallelize the execution; multiprocessing will copy (serialize) all the disciplines, while threading will share all the memory This is important to note if you want to execute the same discipline multiple times, you shall use multiprocessing.
By default it is set to False.
wait_time_between_fork –
The time waited between two forks of the process / thread.
By default it is set to 0.
auto_set_step –
Whether to compute the optimal step for a forward first order finite differences gradient approximation.
By default it is set to False.
plot_result –
Whether to plot the result of the validation (computed vs approximated Jacobians).
By default it is set to False.
file_path –
The path to the output file if
plot_result
isTrue
.By default it is set to jacobian_errors.pdf.
show –
Whether to open the figure.
By default it is set to False.
figsize_x –
The x-size of the figure in inches.
By default it is set to 10.
figsize_y –
The y-size of the figure in inches.
By default it is set to 10.
reference_jacobian_path –
The path of the reference Jacobian file.
By default it is set to None.
save_reference_jacobian –
Whether to save the reference Jacobian.
By default it is set to False.
indices –
The indices of the inputs and outputs for the different sub-Jacobian matrices, formatted as
{variable_name: variable_components}
wherevariable_components
can be either an integer, e.g. 2 a sequence of integers, e.g. [0, 3], a slice, e.g. slice(0,3), the ellipsis symbol (…) or None, which is the same as ellipsis. If a variable name is missing, consider all its components. If None, consider all the components of all theinputs
andoutputs
.By default it is set to None.
- Returns
Whether the analytical Jacobian is correct with respect to the reference one.
- check_output_data(raise_exception=True)
Check the output data validity.
- Parameters
raise_exception (bool) –
Whether to raise an exception when the data is invalid.
By default it is set to True.
- Return type
None
- classmethod deactivate_time_stamps()
Deactivate the time stamps.
For storing start and end times of execution and linearizations.
- Return type
None
- property default_inputs
The default inputs.
- Raises
TypeError – When the default inputs are not passed as a dictionary.
- static deserialize(in_file)
Deserialize a discipline from a file.
- Parameters
in_file (Union[str, pathlib.Path]) – The path to the file containing the discipline.
- Returns
The discipline instance.
- Return type
- property exec_time
The cumulated execution time of the discipline.
Note
This property is multiprocessing safe.
- execute(input_data=None)
Execute the discipline.
This method executes the discipline:
Adds the default inputs to the
input_data
if some inputs are not defined in input_data but exist in_default_inputs
.Checks whether the last execution of the discipline was called with identical inputs, ie. cached in
cache
; if so, directly returnsself.cache.get_output_cache(inputs)
.Caches the inputs.
Checks the input data against
input_grammar
.If
data_processor
is not None, runs the preprocessor.Updates the status to
RUNNING
.Calls the
_run()
method, that shall be defined.If
data_processor
is not None, runs the postprocessor.Checks the output data.
Caches the outputs.
Updates the status to
DONE
orFAILED
.Updates summed execution time.
- Parameters
input_data (Optional[Dict[str, Any]]) –
The input data needed to execute the discipline according to the discipline input grammar. If None, use the
default_inputs
.By default it is set to None.
- Returns
The discipline local data after execution.
- Return type
Dict[str, Any]
- get_all_inputs()
Return the local input data as a list.
The order is given by
get_input_data_names()
.- Returns
The local input data.
- Return type
List[Any]
- get_all_outputs()
Return the local output data as a list.
The order is given by
get_output_data_names()
.- Returns
The local output data.
- Return type
List[Any]
- get_attributes_to_serialize()
Define the names of the attributes to be serialized.
Shall be overloaded by disciplines
- Returns
The names of the attributes to be serialized.
- static get_data_list_from_dict(keys, data_dict)
Filter the dict from a list of keys or a single key.
If keys is a string, then the method return the value associated to the key. If keys is a list of strings, then the method returns a generator of value corresponding to the keys which can be iterated.
- Parameters
keys (Union[str, Iterable]) – One or several names.
data_dict (Dict[str, Any]) – The mapping from which to get the data.
- Returns
Either a data or a generator of data.
- Return type
Union[Any, Generator[Any]]
- get_expected_dataflow()
Return the expected data exchange sequence.
This method is used for the XDSM representation.
The default expected data exchange sequence is an empty list.
See also
MDOFormulation.get_expected_dataflow
- Returns
The data exchange arcs.
- Return type
List[Tuple[gemseo.core.discipline.MDODiscipline, gemseo.core.discipline.MDODiscipline, List[str]]]
- get_expected_workflow()
Return the expected execution sequence.
This method is used for the XDSM representation.
The default expected execution sequence is the execution of the discipline itself.
See also
MDOFormulation.get_expected_workflow
- Returns
The expected execution sequence.
- Return type
- get_input_data()
Return the local input data as a dictionary.
- Returns
The local input data.
- Return type
Dict[str, Any]
- get_input_data_names()
Return the names of the input variables.
- Returns
The names of the input variables.
- Return type
List[str]
- get_input_output_data_names()
Return the names of the input and output variables.
- Returns
The name of the input and output variables.
- Return type
List[str]
- get_inputs_asarray()
Return the local output data as a large NumPy array.
The order is the one of
get_all_outputs()
.- Returns
The local output data.
- Return type
numpy.ndarray
- get_inputs_by_name(data_names)
Return the local data associated with input variables.
- Parameters
data_names (Iterable[str]) – The names of the input variables.
- Returns
The local data for the given input variables.
- Raises
ValueError – When a variable is not an input of the discipline.
- Return type
List[Any]
- get_local_data_by_name(data_names)
Return the local data of the discipline associated with variables names.
- Parameters
data_names (Iterable[str]) – The names of the variables.
- Returns
The local data associated with the variables names.
- Raises
ValueError – When a name is not not a discipline input name.
- Return type
Generator[Any]
- get_output_data()
Return the local output data as a dictionary.
- Returns
The local output data.
- Return type
Dict[str, Any]
- get_output_data_names()
Return the names of the output variables.
- Returns
The names of the output variables.
- Return type
List[str]
- get_outputs_asarray()
Return the local input data as a large NumPy array.
The order is the one of
get_all_inputs()
.- Returns
The local input data.
- Return type
numpy.ndarray
- get_outputs_by_name(data_names)
Return the local data associated with output variables.
- Parameters
data_names (Iterable[str]) – The names of the output variables.
- Returns
The local data for the given output variables.
- Raises
ValueError – When a variable is not an output of the discipline.
- Return type
List[Any]
- get_sub_disciplines()
Return the sub-disciplines if any.
- Returns
The sub-disciplines.
- Return type
- property grammar_type
The grammar type.
- is_all_inputs_existing(data_names)
Test if several variables are discipline inputs.
- Parameters
data_names (Iterable[str]) – The names of the variables.
- Returns
Whether all the variables are discipline inputs.
- Return type
bool
- is_all_outputs_existing(data_names)
Test if several variables are discipline outputs.
- Parameters
data_names (Iterable[str]) – The names of the variables.
- Returns
Whether all the variables are discipline outputs.
- Return type
bool
- is_input_existing(data_name)
Test if a variable is a discipline input.
- Parameters
data_name (str) – The name of the variable.
- Returns
Whether the variable is a discipline input.
- Return type
bool
- is_output_existing(data_name)
Test if a variable is a discipline output.
- Parameters
data_name (str) – The name of the variable.
- Returns
Whether the variable is a discipline output.
- Return type
bool
- static is_scenario()
Whether the discipline is a scenario.
- Return type
bool
- property linearization_mode
The linearization mode among
LINEARIZE_MODE_LIST
.- Raises
ValueError – When the linearization mode is unknown.
- linearize(input_data=None, force_all=False, force_no_exec=False)
Execute the linearized version of the code.
- Parameters
input_data (Optional[Dict[str, Any]]) –
The input data needed to linearize the discipline according to the discipline input grammar. If None, use the
default_inputs
.By default it is set to None.
force_all (bool) –
If False,
_differentiated_inputs
anddifferentiated_output
are used to filter the differentiated variables. otherwise, all outputs are differentiated wrt all inputs.By default it is set to False.
force_no_exec (bool) –
If True, the discipline is not re executed, cache is loaded anyway.
By default it is set to False.
- Returns
The Jacobian of the discipline.
- Return type
Dict[str, Dict[str, numpy.ndarray]]
- property n_calls
The number of times the discipline was executed.
Note
This property is multiprocessing safe.
- property n_calls_linearize
The number of times the discipline was linearized.
Note
This property is multiprocessing safe.
- notify_status_observers()
Notify all status observers that the status has changed.
- Return type
None
- remove_status_observer(obs)
Remove an observer for the status.
- Parameters
obs (Any) – The observer to remove.
- Return type
None
- reset_statuses_for_run()
Set all the statuses to
PENDING
.- Raises
ValueError – When the discipline cannot be run because of its status.
- Return type
None
- serialize(out_file)
Serialize the discipline and store it in a file.
- Parameters
out_file (Union[str, pathlib.Path]) – The path to the file to store the discipline.
- Return type
None
- set_cache_policy(cache_type='SimpleCache', cache_tolerance=0.0, cache_hdf_file=None, cache_hdf_node_name=None, is_memory_shared=True)
Set the type of cache to use and the tolerance level.
This method defines when the output data have to be cached according to the distance between the corresponding input data and the input data already cached for which output data are also cached.
The cache can be either a
SimpleCache
recording the last execution or a cache storing all executions, e.g.MemoryFullCache
andHDF5Cache
. Caching data can be either in-memory, e.g.SimpleCache
andMemoryFullCache
, or on the disk, e.g.HDF5Cache
.The attribute
CacheFactory.caches
provides the available caches types.- Parameters
cache_type (str) –
The type of cache.
By default it is set to SimpleCache.
cache_tolerance (float) –
The maximum relative norm of the difference between two input arrays to consider that two input arrays are equal.
By default it is set to 0.0.
cache_hdf_file (Optional[Union[str, pathlib.Path]]) –
The path to the HDF file to store the data; this argument is mandatory when the
HDF5Cache
policy is used.By default it is set to None.
cache_hdf_node_name (Optional[str]) –
The name of the HDF file node to store the discipline data. If None,
name
is used.By default it is set to None.
is_memory_shared (bool) –
Whether to store the data with a shared memory dictionary, which makes the cache compatible with multiprocessing.
By default it is set to True.
- Return type
None
- set_disciplines_statuses(status)
Set the sub-disciplines statuses.
To be implemented in subclasses.
- Parameters
status (str) – The status.
- Return type
None
- set_jacobian_approximation(jac_approx_type='finite_differences', jax_approx_step=1e-07, jac_approx_n_processes=1, jac_approx_use_threading=False, jac_approx_wait_time=0)
Set the Jacobian approximation method.
Sets the linearization mode to approx_method, sets the parameters of the approximation for further use when calling
linearize()
.- Parameters
jac_approx_type (str) –
The approximation method, either “complex_step” or “finite_differences”.
By default it is set to finite_differences.
jax_approx_step (float) –
The differentiation step.
By default it is set to 1e-07.
jac_approx_n_processes (int) –
The maximum number of processors on which to run.
By default it is set to 1.
jac_approx_use_threading (bool) –
Whether to use threads instead of processes to parallelize the execution; multiprocessing will copy (serialize) all the disciplines, while threading will share all the memory This is important to note if you want to execute the same discipline multiple times, you shall use multiprocessing.
By default it is set to False.
jac_approx_wait_time (float) –
The time waited between two forks of the process / thread.
By default it is set to 0.
- Return type
None
- set_optimal_fd_step(outputs=None, inputs=None, force_all=False, print_errors=False, numerical_error=2.220446049250313e-16)
Compute the optimal finite-difference step.
Compute the optimal step for a forward first order finite differences gradient approximation. Requires a first evaluation of the perturbed functions values. The optimal step is reached when the truncation error (cut in the Taylor development), and the numerical cancellation errors (roundoff when doing f(x+step)-f(x))
are approximately equal.
Warning
This calls the discipline execution twice per input variables.
See also
https://en.wikipedia.org/wiki/Numerical_differentiation and “Numerical Algorithms and Digital Representation”, Knut Morken , Chapter 11, “Numerical Differenciation”
- Parameters
inputs –
The inputs wrt which the outputs are linearized. If None, use the
_differentiated_inputs
.By default it is set to None.
outputs –
The outputs to be linearized. If None, use the
_differentiated_outputs
.By default it is set to None.
force_all –
Whether to consider all the inputs and outputs of the discipline;
By default it is set to False.
print_errors –
Whether to display the estimated errors.
By default it is set to False.
numerical_error –
The numerical error associated to the calculation of f. By default, this is the machine epsilon (appx 1e-16), but can be higher when the calculation of f requires a numerical resolution.
By default it is set to 2.220446049250313e-16.
- Returns
The estimated errors of truncation and cancellation error.
- Raises
ValueError – When the Jacobian approximation method has not been set.
- property status
The status of the discipline.
- store_local_data(**kwargs)
Store discipline data in local data.
- Parameters
kwargs – The data to be stored in
local_data
.**kwargs (Any) –
- Return type
None
Iris dataset¶
This is one of the best known Dataset
to be found in the machine learning literature.
It was introduced by the statistician Ronald Fisher in his 1936 paper “The use of multiple measurements in taxonomic problems”, Annals of Eugenics. 7 (2): 179–188.
It contains 150 instances of iris plants:
50 Iris Setosa,
50 Iris Versicolour,
50 Iris Virginica.
Each instance is characterized by:
its sepal length in cm,
its sepal width in cm,
its petal length in cm,
its petal width in cm.
This Dataset
can be used for either clustering purposes
or classification ones.
More information about the Iris dataset
Classes:
|
Iris dataset parametrization. |
- class gemseo.problems.dataset.iris.IrisDataset(name='Iris', by_group=True, as_io=False)[source]
Iris dataset parametrization.
Constructor.
Methods:
add_group
(group, data[, variables, sizes, ...])Add data related to a group.
add_variable
(name, data[, group, cache_as_input])Add data related to a variable.
compare
(value_1, logical_operator, value_2)Compare either a variable and a value or a variable and another variable.
export_to_cache
([inputs, outputs, ...])Export the dataset to a cache.
export_to_dataframe
([copy])Export the dataset to a pandas Dataframe.
find
(comparison)Find the entries for which a comparison is satisfied.
get_all_data
([by_group, as_dict])Get all the data stored in the dataset.
Return the available plot methods.
get_data_by_group
(group[, as_dict])Get the data for a specific group name.
get_data_by_names
(names[, as_dict])Get the data for specific names of variables.
get_group
(variable_name)Get the name of the group that contains a variable.
get_names
(group_name)Get the names of the variables of a group.
get_normalized_dataset
([excluded_variables, ...])Get a normalized copy of the dataset.
is_empty
()Check if the dataset is empty.
is_group
(name)Check if a name is a group name.
is_nan
()Check if an entry contains NaN.
is_variable
(name)Check if a name is a variable name.
n_variables_by_group
(group)The number of variables for a group.
plot
(name[, show, save])Plot the dataset from a
DatasetPlot
.remove
(entries)Remove entries.
set_from_array
(data[, variables, sizes, ...])Set the dataset from an array.
set_from_file
(filename[, variables, sizes, ...])Set the dataset from a file.
set_metadata
(name, value)Set a metadata attribute.
Attributes:
The names of the columns of the dataset.
The sorted names of the groups of variables.
The number of samples.
The number of variables.
The names of the rows.
The sorted names of the variables.
- add_group(group, data, variables=None, sizes=None, pattern=None, cache_as_input=True)
Add data related to a group.
- Parameters
group (str) – The name of the group of data to be added.
data (numpy.ndarray) – The data to be added.
variables (Optional[List[str]]) –
The names of the variables. If None, use default names based on a pattern.
By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
pattern (Optional[str]) –
The name of the variable to be used as a pattern when variables is None. If None, use the
Dataset.DEFAULT_NAMES
for this group if it exists. Otherwise, use the group name.By default it is set to None.
cache_as_input (bool) –
If True, cache these data as inputs when the cache is exported to a cache.
By default it is set to True.
- Return type
str
- add_variable(name, data, group='parameters', cache_as_input=True)
Add data related to a variable.
- Parameters
name (str) – The name of the variable to be stored.
data (numpy.ndarray) – The data to be stored.
group (str) –
The name of the group related to this variable.
By default it is set to parameters.
cache_as_input (bool) –
If True, cache these data as inputs when the cache is exported to a cache.
By default it is set to True.
- Return type
None
- property columns_names
The names of the columns of the dataset.
- compare(value_1, logical_operator, value_2, component_1=0, component_2=0)
Compare either a variable and a value or a variable and another variable.
- Parameters
value_1 (Union[str, float]) – The first value, either a variable name or a numeric value.
logical_operator (str) – The logical operator, either “==”, “<”, “<=”, “>” or “>=”.
value_2 (Union[str, float]) – The second value, either a variable name or a numeric value.
component_1 (int) –
If value_1 is a variable name, component_1 corresponds to its component used in the comparison.
By default it is set to 0.
component_2 (int) –
If value_2 is a variable name, component_2 corresponds to its component used in the comparison.
By default it is set to 0.
- Returns
Whether the comparison is valid for the different entries.
- Return type
numpy.ndarray
- export_to_cache(inputs=None, outputs=None, cache_type='MemoryFullCache', cache_hdf_file=None, cache_hdf_node_name=None, **options)
Export the dataset to a cache.
- Parameters
inputs (Optional[Iterable[str]]) –
The names of the inputs to cache. If None, use all inputs.
By default it is set to None.
outputs (Optional[Iterable[str]]) –
The names of the outputs to cache. If None, use all outputs.
By default it is set to None.
cache_type (str) –
The type of cache to use.
By default it is set to MemoryFullCache.
cache_hdf_file (Optional[str]) –
The name of the HDF file to store the data. Required if the type of the cache is ‘HDF5Cache’.
By default it is set to None.
cache_hdf_node_name (Optional[str]) –
The name of the HDF node to store the discipline. If None, use the name of the dataset.
By default it is set to None.
- Returns
A cache containing the dataset.
- Return type
- export_to_dataframe(copy=True)
Export the dataset to a pandas Dataframe.
- Parameters
copy (bool) –
If True, copy data. Otherwise, use reference.
By default it is set to True.
- Returns
A pandas DataFrame containing the dataset.
- Return type
DataFrame
- static find(comparison)
Find the entries for which a comparison is satisfied.
This search uses a boolean 1D array whose length is equal to the length of the dataset.
- Parameters
comparison (numpy.ndarray) – A boolean vector whose length is equal to the number of samples.
- Returns
The indices of the entries for which the comparison is satisfied.
- Return type
List[int]
- get_all_data(by_group=True, as_dict=False)
Get all the data stored in the dataset.
The data can be returned either as a dictionary indexed by the names of the variables, or as an array concatenating them, accompanied with the names and sizes of the variables.
The data can also classified by groups of variables.
- Parameters
by_group –
If True, sort the data by group.
By default it is set to True.
as_dict –
If True, return the data as a dictionary.
By default it is set to False.
- Returns
All the data stored in the dataset.
- Return type
Union[Dict[str, Union[Dict[str, numpy.ndarray], numpy.ndarray]], Tuple[Union[numpy.ndarray, Dict[str, numpy.ndarray]], List[str], Dict[str, int]]]
- get_available_plots()
Return the available plot methods.
- Return type
List[str]
- get_data_by_group(group, as_dict=False)
Get the data for a specific group name.
- Parameters
group (str) – The name of the group.
as_dict (bool) –
If True, return values as dictionary.
By default it is set to False.
- Returns
The data related to the group.
- Return type
Union[numpy.ndarray, Dict[str, numpy.ndarray]]
- get_data_by_names(names, as_dict=True)
Get the data for specific names of variables.
- Parameters
names (Union[str, Iterable[str]]) – The names of the variables.
as_dict (bool) –
If True, return values as dictionary.
By default it is set to True.
- Returns
The data related to the variables.
- Return type
Union[numpy.ndarray, Dict[str, numpy.ndarray]]
- get_group(variable_name)
Get the name of the group that contains a variable.
- Parameters
variable_name (str) – The name of the variable.
- Returns
The group to which the variable belongs.
- Return type
str
- get_names(group_name)
Get the names of the variables of a group.
- Parameters
group_name (str) – The name of the group.
- Returns
The names of the variables of the group.
- Return type
List[str]
- get_normalized_dataset(excluded_variables=None, excluded_groups=None)
Get a normalized copy of the dataset.
- Parameters
excluded_variables (Optional[Sequence[str]]) –
The names of the variables not to be normalized. If None, normalize all the variables.
By default it is set to None.
excluded_groups (Optional[Sequence[str]]) –
The names of the groups not to be normalized. If None, normalize all the groups.
By default it is set to None.
- Returns
A normalized dataset.
- Return type
- property groups
The sorted names of the groups of variables.
- is_empty()
Check if the dataset is empty.
- Returns
Whether the dataset is empty.
- Return type
bool
- is_group(name)
Check if a name is a group name.
- Parameters
name (str) – A name of a group.
- Returns
Whether the name is a group name.
- Return type
bool
- is_nan()
Check if an entry contains NaN.
- Returns
Whether any entries is NaN or not.
- Return type
numpy.ndarray
- is_variable(name)
Check if a name is a variable name.
- Parameters
name (str) – A name of a variable.
- Returns
Whether the name is a variable name.
- Return type
bool
- property n_samples
The number of samples.
- property n_variables
The number of variables.
- n_variables_by_group(group)
The number of variables for a group.
- Parameters
group (str) – The name of a group.
- Returns
The group dimension.
- Return type
int
- plot(name, show=True, save=False, **options)
Plot the dataset from a
DatasetPlot
.See
Dataset.get_available_plots()
- Parameters
name (str) – The name of the post-processing, which is the name of a class inheriting from
DatasetPlot
.show (bool) –
If True, display the figure.
By default it is set to True.
save (bool) –
If True, save the figure.
By default it is set to False.
options – The options for the post-processing.
- Return type
None
- remove(entries)
Remove entries.
- Parameters
entries (Union[List[int], numpy.ndarray]) – The entries to be removed, either indices or a boolean 1D array whose length is equal to the length of the dataset and elements to delete are coded True.
- Return type
None
- property row_names
The names of the rows.
- set_from_array(data, variables=None, sizes=None, groups=None, default_name=None)
Set the dataset from an array.
- Parameters
data (numpy.ndarray) – The data to be stored.
variables (Optional[List[str]]) –
The names of the variables. If None, use one default name per column of the array based on the pattern ‘default_name’.
By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
groups (Optional[Dict[str, str]]) –
The groups of the variables. If None, use
Dataset.DEFAULT_GROUP
for all the variables.By default it is set to None.
default_name (Optional[str]) –
The name of the variable to be used as a pattern when variables is None. If None, use the
Dataset.DEFAULT_NAMES
for this group if it exists. Otherwise, use the group name.By default it is set to None.
- Return type
None
- set_from_file(filename, variables=None, sizes=None, groups=None, delimiter=',', header=True)
Set the dataset from a file.
- Parameters
filename (str) – The name of the file containing the data.
variables (Optional[List[str]]) –
The names of the variables. If None and header is True, read the names from the first line of the file. If None and header is False, use default names based on the patterns the
Dataset.DEFAULT_NAMES
associated with the different groups.By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
groups (Optional[Dict[str, str]]) –
The groups of the variables. If None, use
Dataset.DEFAULT_GROUP
for all the variables.By default it is set to None.
delimiter (str) –
The field delimiter.
By default it is set to ,.
header (bool) –
If True, read the names of the variables on the first line of the file.
By default it is set to True.
- Return type
None
- set_metadata(name, value)
Set a metadata attribute.
- Parameters
name (str) – The name of the metadata attribute.
value (Any) – The value of the metadata attribute.
- Return type
None
- property variables
The sorted names of the variables.
Rosenbrock dataset¶
This Dataset
contains 100 evaluations
of the well-known Rosenbrock function:
This function is known for its global minimum at point (1,1), its banana valley and the difficulty to reach its minimum.
This Dataset
is based on a full-factorial
design of experiments.
More information about the Rosenbrock function
Classes:
|
Rosenbrock dataset parametrization. |
- class gemseo.problems.dataset.rosenbrock.RosenbrockDataset(name='Rosenbrock', by_group=True, n_samples=100, categorize=True, opt_naming=True)[source]
Rosenbrock dataset parametrization.
Constructor.
- Parameters
name (str) –
name of the dataset.
By default it is set to Rosenbrock.
by_group (bool) –
if True, store the data by group. Otherwise, store them by variables. Default: True
By default it is set to True.
n_samples (int) –
number of samples
By default it is set to 100.
categorize (bool) –
distinguish between the different groups of variables. Default: True.
By default it is set to True.
- Parma bool opt_naming
use an optimization naming. Default: True.
Methods:
add_group
(group, data[, variables, sizes, ...])Add data related to a group.
add_variable
(name, data[, group, cache_as_input])Add data related to a variable.
compare
(value_1, logical_operator, value_2)Compare either a variable and a value or a variable and another variable.
export_to_cache
([inputs, outputs, ...])Export the dataset to a cache.
export_to_dataframe
([copy])Export the dataset to a pandas Dataframe.
find
(comparison)Find the entries for which a comparison is satisfied.
get_all_data
([by_group, as_dict])Get all the data stored in the dataset.
Return the available plot methods.
get_data_by_group
(group[, as_dict])Get the data for a specific group name.
get_data_by_names
(names[, as_dict])Get the data for specific names of variables.
get_group
(variable_name)Get the name of the group that contains a variable.
get_names
(group_name)Get the names of the variables of a group.
get_normalized_dataset
([excluded_variables, ...])Get a normalized copy of the dataset.
is_empty
()Check if the dataset is empty.
is_group
(name)Check if a name is a group name.
is_nan
()Check if an entry contains NaN.
is_variable
(name)Check if a name is a variable name.
n_variables_by_group
(group)The number of variables for a group.
plot
(name[, show, save])Plot the dataset from a
DatasetPlot
.remove
(entries)Remove entries.
set_from_array
(data[, variables, sizes, ...])Set the dataset from an array.
set_from_file
(filename[, variables, sizes, ...])Set the dataset from a file.
set_metadata
(name, value)Set a metadata attribute.
Attributes:
The names of the columns of the dataset.
The sorted names of the groups of variables.
The number of samples.
The number of variables.
The names of the rows.
The sorted names of the variables.
- add_group(group, data, variables=None, sizes=None, pattern=None, cache_as_input=True)
Add data related to a group.
- Parameters
group (str) – The name of the group of data to be added.
data (numpy.ndarray) – The data to be added.
variables (Optional[List[str]]) –
The names of the variables. If None, use default names based on a pattern.
By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
pattern (Optional[str]) –
The name of the variable to be used as a pattern when variables is None. If None, use the
Dataset.DEFAULT_NAMES
for this group if it exists. Otherwise, use the group name.By default it is set to None.
cache_as_input (bool) –
If True, cache these data as inputs when the cache is exported to a cache.
By default it is set to True.
- Return type
str
- add_variable(name, data, group='parameters', cache_as_input=True)
Add data related to a variable.
- Parameters
name (str) – The name of the variable to be stored.
data (numpy.ndarray) – The data to be stored.
group (str) –
The name of the group related to this variable.
By default it is set to parameters.
cache_as_input (bool) –
If True, cache these data as inputs when the cache is exported to a cache.
By default it is set to True.
- Return type
None
- property columns_names
The names of the columns of the dataset.
- compare(value_1, logical_operator, value_2, component_1=0, component_2=0)
Compare either a variable and a value or a variable and another variable.
- Parameters
value_1 (Union[str, float]) – The first value, either a variable name or a numeric value.
logical_operator (str) – The logical operator, either “==”, “<”, “<=”, “>” or “>=”.
value_2 (Union[str, float]) – The second value, either a variable name or a numeric value.
component_1 (int) –
If value_1 is a variable name, component_1 corresponds to its component used in the comparison.
By default it is set to 0.
component_2 (int) –
If value_2 is a variable name, component_2 corresponds to its component used in the comparison.
By default it is set to 0.
- Returns
Whether the comparison is valid for the different entries.
- Return type
numpy.ndarray
- export_to_cache(inputs=None, outputs=None, cache_type='MemoryFullCache', cache_hdf_file=None, cache_hdf_node_name=None, **options)
Export the dataset to a cache.
- Parameters
inputs (Optional[Iterable[str]]) –
The names of the inputs to cache. If None, use all inputs.
By default it is set to None.
outputs (Optional[Iterable[str]]) –
The names of the outputs to cache. If None, use all outputs.
By default it is set to None.
cache_type (str) –
The type of cache to use.
By default it is set to MemoryFullCache.
cache_hdf_file (Optional[str]) –
The name of the HDF file to store the data. Required if the type of the cache is ‘HDF5Cache’.
By default it is set to None.
cache_hdf_node_name (Optional[str]) –
The name of the HDF node to store the discipline. If None, use the name of the dataset.
By default it is set to None.
- Returns
A cache containing the dataset.
- Return type
- export_to_dataframe(copy=True)
Export the dataset to a pandas Dataframe.
- Parameters
copy (bool) –
If True, copy data. Otherwise, use reference.
By default it is set to True.
- Returns
A pandas DataFrame containing the dataset.
- Return type
DataFrame
- static find(comparison)
Find the entries for which a comparison is satisfied.
This search uses a boolean 1D array whose length is equal to the length of the dataset.
- Parameters
comparison (numpy.ndarray) – A boolean vector whose length is equal to the number of samples.
- Returns
The indices of the entries for which the comparison is satisfied.
- Return type
List[int]
- get_all_data(by_group=True, as_dict=False)
Get all the data stored in the dataset.
The data can be returned either as a dictionary indexed by the names of the variables, or as an array concatenating them, accompanied with the names and sizes of the variables.
The data can also classified by groups of variables.
- Parameters
by_group –
If True, sort the data by group.
By default it is set to True.
as_dict –
If True, return the data as a dictionary.
By default it is set to False.
- Returns
All the data stored in the dataset.
- Return type
Union[Dict[str, Union[Dict[str, numpy.ndarray], numpy.ndarray]], Tuple[Union[numpy.ndarray, Dict[str, numpy.ndarray]], List[str], Dict[str, int]]]
- get_available_plots()
Return the available plot methods.
- Return type
List[str]
- get_data_by_group(group, as_dict=False)
Get the data for a specific group name.
- Parameters
group (str) – The name of the group.
as_dict (bool) –
If True, return values as dictionary.
By default it is set to False.
- Returns
The data related to the group.
- Return type
Union[numpy.ndarray, Dict[str, numpy.ndarray]]
- get_data_by_names(names, as_dict=True)
Get the data for specific names of variables.
- Parameters
names (Union[str, Iterable[str]]) – The names of the variables.
as_dict (bool) –
If True, return values as dictionary.
By default it is set to True.
- Returns
The data related to the variables.
- Return type
Union[numpy.ndarray, Dict[str, numpy.ndarray]]
- get_group(variable_name)
Get the name of the group that contains a variable.
- Parameters
variable_name (str) – The name of the variable.
- Returns
The group to which the variable belongs.
- Return type
str
- get_names(group_name)
Get the names of the variables of a group.
- Parameters
group_name (str) – The name of the group.
- Returns
The names of the variables of the group.
- Return type
List[str]
- get_normalized_dataset(excluded_variables=None, excluded_groups=None)
Get a normalized copy of the dataset.
- Parameters
excluded_variables (Optional[Sequence[str]]) –
The names of the variables not to be normalized. If None, normalize all the variables.
By default it is set to None.
excluded_groups (Optional[Sequence[str]]) –
The names of the groups not to be normalized. If None, normalize all the groups.
By default it is set to None.
- Returns
A normalized dataset.
- Return type
- property groups
The sorted names of the groups of variables.
- is_empty()
Check if the dataset is empty.
- Returns
Whether the dataset is empty.
- Return type
bool
- is_group(name)
Check if a name is a group name.
- Parameters
name (str) – A name of a group.
- Returns
Whether the name is a group name.
- Return type
bool
- is_nan()
Check if an entry contains NaN.
- Returns
Whether any entries is NaN or not.
- Return type
numpy.ndarray
- is_variable(name)
Check if a name is a variable name.
- Parameters
name (str) – A name of a variable.
- Returns
Whether the name is a variable name.
- Return type
bool
- property n_samples
The number of samples.
- property n_variables
The number of variables.
- n_variables_by_group(group)
The number of variables for a group.
- Parameters
group (str) – The name of a group.
- Returns
The group dimension.
- Return type
int
- plot(name, show=True, save=False, **options)
Plot the dataset from a
DatasetPlot
.See
Dataset.get_available_plots()
- Parameters
name (str) – The name of the post-processing, which is the name of a class inheriting from
DatasetPlot
.show (bool) –
If True, display the figure.
By default it is set to True.
save (bool) –
If True, save the figure.
By default it is set to False.
options – The options for the post-processing.
- Return type
None
- remove(entries)
Remove entries.
- Parameters
entries (Union[List[int], numpy.ndarray]) – The entries to be removed, either indices or a boolean 1D array whose length is equal to the length of the dataset and elements to delete are coded True.
- Return type
None
- property row_names
The names of the rows.
- set_from_array(data, variables=None, sizes=None, groups=None, default_name=None)
Set the dataset from an array.
- Parameters
data (numpy.ndarray) – The data to be stored.
variables (Optional[List[str]]) –
The names of the variables. If None, use one default name per column of the array based on the pattern ‘default_name’.
By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
groups (Optional[Dict[str, str]]) –
The groups of the variables. If None, use
Dataset.DEFAULT_GROUP
for all the variables.By default it is set to None.
default_name (Optional[str]) –
The name of the variable to be used as a pattern when variables is None. If None, use the
Dataset.DEFAULT_NAMES
for this group if it exists. Otherwise, use the group name.By default it is set to None.
- Return type
None
- set_from_file(filename, variables=None, sizes=None, groups=None, delimiter=',', header=True)
Set the dataset from a file.
- Parameters
filename (str) – The name of the file containing the data.
variables (Optional[List[str]]) –
The names of the variables. If None and header is True, read the names from the first line of the file. If None and header is False, use default names based on the patterns the
Dataset.DEFAULT_NAMES
associated with the different groups.By default it is set to None.
sizes (Optional[Dict[str, int]]) –
The sizes of the variables. If None, assume that all the variables have a size equal to 1.
By default it is set to None.
groups (Optional[Dict[str, str]]) –
The groups of the variables. If None, use
Dataset.DEFAULT_GROUP
for all the variables.By default it is set to None.
delimiter (str) –
The field delimiter.
By default it is set to ,.
header (bool) –
If True, read the names of the variables on the first line of the file.
By default it is set to True.
- Return type
None
- set_metadata(name, value)
Set a metadata attribute.
- Parameters
name (str) – The name of the metadata attribute.
value (Any) – The value of the metadata attribute.
- Return type
None
- property variables
The sorted names of the variables.