Clustering algorithms¶
Warning
Some algorithms may require the installation of GEMSEO with all its features and some others may depend on plugins.
Note
All the features of the wrapped optimization libraries may not be exposed through GEMSEO.
GaussianMixture¶
Module: gemseo.mlearning.cluster.gaussian_mixture
- Required parameters
data : Dataset
The learning dataset.
- Optional parameters
n_components : int, optional
The number of components of the Gaussian mixture.
By default it is set to 5.
transformer : Mapping[str, TransformerType] | None, optional
The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.By default it is set to None.
var_names : Iterable[str] | None, optional
The names of the variables. If None, consider all variables mentioned in the learning dataset.
By default it is set to None.
**parameters : int | float | str | bool | None
The parameters of the machine learning algorithm.
KMeans¶
Module: gemseo.mlearning.cluster.kmeans
- Required parameters
data : Dataset
The learning dataset.
- Optional parameters
n_clusters : int, optional
The number of clusters of the K-means algorithm.
By default it is set to 5.
random_state : int | None, optional
If None, use a random generation of the initial centroids. If not None, the integer is used to make the initialization deterministic.
By default it is set to 0.
transformer : Mapping[str, TransformerType] | None, optional
The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.By default it is set to None.
var_names : Iterable[str] | None, optional
The names of the variables. If None, consider all variables mentioned in the learning dataset.
By default it is set to None.
**parameters : int | float | bool | str | None
The parameters of the machine learning algorithm.
MLPredictiveClusteringAlgo¶
Module: gemseo.mlearning.cluster.cluster
- Required parameters
data : Dataset
The learning dataset.
- Optional parameters
transformer : Mapping[str, TransformerType] | None, optional
The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.By default it is set to None.
var_names : Iterable[str] | None, optional
The names of the variables. If None, consider all variables mentioned in the learning dataset.
By default it is set to None.
**parameters : MLAlgoParameterType
The parameters of the machine learning algorithm.