Note
Click here to download the full example code
MDF-based DOE on the Sobieski SSBJ test case¶
from os import name as os_name
from gemseo.api import configure_logger
from gemseo.api import create_discipline
from gemseo.api import create_scenario
from gemseo.problems.sobieski.core.problem import SobieskiProblem
from matplotlib import pyplot as plt
configure_logger()
Out:
<RootLogger root (INFO)>
Instantiate the disciplines¶
First, we instantiate the four disciplines of the use case:
SobieskiPropulsion
,
SobieskiAerodynamics
,
SobieskiMission
and SobieskiStructure
.
disciplines = create_discipline(
[
"SobieskiPropulsion",
"SobieskiAerodynamics",
"SobieskiMission",
"SobieskiStructure",
]
)
Build, execute and post-process the scenario¶
Then, we build the scenario which links the disciplines
with the formulation and the optimization algorithm. Here, we use the
BiLevel
formulation. We tell the scenario to minimize -y_4
instead of minimizing y_4 (range), which is the default option.
We need to define the design space.
design_space = SobieskiProblem().design_space
Instantiate the scenario¶
scenario = create_scenario(
disciplines,
formulation="MDF",
objective_name="y_4",
design_space=design_space,
maximize_objective=True,
scenario_type="DOE",
)
Set the design constraints¶
for constraint in ["g_1", "g_2", "g_3"]:
scenario.add_constraint(constraint, "ineq")
Execute the scenario¶
Use provided analytic derivatives
scenario.set_differentiation_method("user")
Multiprocessing¶
It is possible to run a DOE in parallel using multiprocessing, in order to do this, we specify the number of processes to be used for the computation of the samples.
# The multiprocessing option has some limitations on Windows.
# Due to problems with sphinx, we disable it in this example.
# For Python versions < 3.7 and Numpy < 1.20.0, subprocesses may get hung
# randomly during execution. It is strongly recommended to update your
# environment to avoid this problem.
# The features :class:`.MemoryFullCache` and :class:`.HDF5Cache` are not
# available for multiprocessing on Windows.
# As an alternative, we recommend the method
# :meth:`.DOEScenario.set_optimization_history_backup`.
We define the algorithm options. Here the criterion = center option of pyDOE centers the points within the sampling intervals.
algo_options = {
"criterion": "center",
# Evaluate gradient of the MDA
# with coupled adjoint
"eval_jac": True,
# Run in parallel on 1 or 4 processors
"n_processes": 1 if os_name == "nt" else 4,
}
scenario.execute({"n_samples": 30, "algo": "lhs", "algo_options": algo_options})
Out:
INFO - 07:17:46:
INFO - 07:17:46: *** Start DOEScenario execution ***
INFO - 07:17:46: DOEScenario
INFO - 07:17:46: Disciplines: SobieskiPropulsion SobieskiAerodynamics SobieskiMission SobieskiStructure
INFO - 07:17:46: MDO formulation: MDF
INFO - 07:17:46: Optimization problem:
INFO - 07:17:46: minimize -y_4(x_shared, x_1, x_2, x_3)
INFO - 07:17:46: with respect to x_1, x_2, x_3, x_shared
INFO - 07:17:46: subject to constraints:
INFO - 07:17:46: g_1(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 07:17:46: g_2(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 07:17:46: g_3(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 07:17:46: over the design space:
INFO - 07:17:46: +----------+-------------+-------+-------------+-------+
INFO - 07:17:46: | name | lower_bound | value | upper_bound | type |
INFO - 07:17:46: +----------+-------------+-------+-------------+-------+
INFO - 07:17:46: | x_shared | 0.01 | 0.05 | 0.09 | float |
INFO - 07:17:46: | x_shared | 30000 | 45000 | 60000 | float |
INFO - 07:17:46: | x_shared | 1.4 | 1.6 | 1.8 | float |
INFO - 07:17:46: | x_shared | 2.5 | 5.5 | 8.5 | float |
INFO - 07:17:46: | x_shared | 40 | 55 | 70 | float |
INFO - 07:17:46: | x_shared | 500 | 1000 | 1500 | float |
INFO - 07:17:46: | x_1 | 0.1 | 0.25 | 0.4 | float |
INFO - 07:17:46: | x_1 | 0.75 | 1 | 1.25 | float |
INFO - 07:17:46: | x_2 | 0.75 | 1 | 1.25 | float |
INFO - 07:17:46: | x_3 | 0.1 | 0.5 | 1 | float |
INFO - 07:17:46: +----------+-------------+-------+-------------+-------+
INFO - 07:17:46: Solving optimization problem with algorithm lhs:
INFO - 07:17:46: ... 0%| | 0/30 [00:00<?, ?it]
INFO - 07:17:46: Running DOE in parallel on n_processes = 4
INFO - 07:17:46: ... 3%|▎ | 1/30 [00:00<00:00, 47.40 it/sec, obj=-567]
INFO - 07:17:46: ... 7%|▋ | 2/30 [00:00<00:00, 39.51 it/sec, obj=-222]
INFO - 07:17:47: ... 17%|█▋ | 5/30 [00:01<00:00, 25.76 it/sec, obj=-519]
INFO - 07:17:47: ... 30%|███ | 9/30 [00:01<00:01, 18.96 it/sec, obj=-556]
INFO - 07:17:47: ... 40%|████ | 12/30 [00:01<00:01, 16.67 it/sec, obj=-538]
INFO - 07:17:47: ... 43%|████▎ | 13/30 [00:01<00:01, 15.35 it/sec, obj=-433]
INFO - 07:17:48: ... 50%|█████ | 15/30 [00:02<00:01, 14.11 it/sec, obj=-574]
INFO - 07:17:48: ... 57%|█████▋ | 17/30 [00:02<00:01, 12.45 it/sec, obj=-1.07e+3]
INFO - 07:17:48: ... 63%|██████▎ | 19/30 [00:02<00:00, 11.52 it/sec, obj=-287]
INFO - 07:17:48: ... 70%|███████ | 21/30 [00:02<00:00, 10.67 it/sec, obj=-247]
INFO - 07:17:49: ... 73%|███████▎ | 22/30 [00:02<00:00, 10.07 it/sec, obj=-414]
INFO - 07:17:49: ... 80%|████████ | 24/30 [00:03<00:00, 9.57 it/sec, obj=-273]
INFO - 07:17:49: ... 87%|████████▋ | 26/30 [00:03<00:00, 8.73 it/sec, obj=-383]
INFO - 07:17:49: ... 90%|█████████ | 27/30 [00:03<00:00, 8.46 it/sec, obj=-606]
INFO - 07:17:49: ... 97%|█████████▋| 29/30 [00:03<00:00, 8.18 it/sec, obj=-485]
INFO - 07:17:49: ... 100%|██████████| 30/30 [00:03<00:00, 7.99 it/sec, obj=-405]
INFO - 07:17:49: Optimization result:
INFO - 07:17:49: Optimizer info:
INFO - 07:17:49: Status: None
INFO - 07:17:49: Message: None
INFO - 07:17:49: Number of calls to the objective function by the optimizer: 30
INFO - 07:17:49: Solution:
INFO - 07:17:49: The solution is feasible.
INFO - 07:17:49: Objective: -485.49229968733584
INFO - 07:17:49: Standardized constraints:
INFO - 07:17:49: g_1 = [-0.11350951 -0.10812292 -0.1045109 -0.10204971 -0.10028641 -0.01838903
INFO - 07:17:49: -0.22161097]
INFO - 07:17:49: g_2 = -0.02400000000000002
INFO - 07:17:49: g_3 = [-0.33063134 -0.66936866 -0.73821755 -0.07789536]
INFO - 07:17:49: Design space:
INFO - 07:17:49: +----------+-------------+---------------------+-------------+-------+
INFO - 07:17:49: | name | lower_bound | value | upper_bound | type |
INFO - 07:17:49: +----------+-------------+---------------------+-------------+-------+
INFO - 07:17:49: | x_shared | 0.01 | 0.05400000000000001 | 0.09 | float |
INFO - 07:17:49: | x_shared | 30000 | 46500 | 60000 | float |
INFO - 07:17:49: | x_shared | 1.4 | 1.686666666666667 | 1.8 | float |
INFO - 07:17:49: | x_shared | 2.5 | 5.2 | 8.5 | float |
INFO - 07:17:49: | x_shared | 40 | 66.5 | 70 | float |
INFO - 07:17:49: | x_shared | 500 | 583.3333333333334 | 1500 | float |
INFO - 07:17:49: | x_1 | 0.1 | 0.185 | 0.4 | float |
INFO - 07:17:49: | x_1 | 0.75 | 0.9416666666666667 | 1.25 | float |
INFO - 07:17:49: | x_2 | 0.75 | 0.775 | 1.25 | float |
INFO - 07:17:49: | x_3 | 0.1 | 0.115 | 1 | float |
INFO - 07:17:49: +----------+-------------+---------------------+-------------+-------+
INFO - 07:17:49: *** End DOEScenario execution (time: 0:00:03.768810) ***
{'eval_jac': False, 'algo': 'lhs', 'algo_options': {'criterion': 'center', 'eval_jac': True, 'n_processes': 4, 'seed': 1, 'n_samples': 30}, 'n_samples': 30}
Warning
On Windows, the progress bar may show duplicated instances during the initialization of each subprocess. In some cases it may also print the conclusion of an iteration ahead of another one that was concluded first. This is a consequence of the pickling process and does not affect the computations of the scenario.
Plot the optimization history view¶
scenario.post_process("OptHistoryView", show=False, save=False)
Out:
<gemseo.post.opt_history_view.OptHistoryView object at 0x7f28d84cc160>
Tip
Each post-processing method requires different inputs and offers a variety
of customization options. Use the API function
get_post_processing_options_schema()
to print a table with
the attributes for any post-processing algo. Or refer to our dedicated page:
Post-processing algorithms.
Plot the scatter matrix¶
scenario.post_process(
"ScatterPlotMatrix", show=False, save=False, variable_names=["y_4", "x_shared"]
)

Out:
<gemseo.post.scatter_mat.ScatterPlotMatrix object at 0x7f28d724c370>
Plot correlations¶
scenario.post_process("Correlations", show=False, save=False)
# Workaround for HTML rendering, instead of ``show=True``
plt.show()

Out:
INFO - 07:17:52: Detected 10 correlations > 0.95
Total running time of the script: ( 0 minutes 7.418 seconds)