Note
Click here to download the full example code
Analytical test case # 3¶
In this example, we consider a simple optimization problem to illustrate algorithms interfaces and DOE libraries integration. Integer variables are used
Imports¶
from __future__ import annotations
from gemseo.algos.design_space import DesignSpace
from gemseo.algos.doe.doe_factory import DOEFactory
from gemseo.algos.opt_problem import OptimizationProblem
from gemseo.api import configure_logger
from gemseo.api import execute_post
from gemseo.core.mdofunctions.mdo_function import MDOFunction
from numpy import sum as np_sum
LOGGER = configure_logger()
Define the objective function¶
We define the objective function \(f(x)=\sum_{i=1}^dx_i\)
using a MDOFunction
.
objective = MDOFunction(np_sum, name="f", expr="sum(x)")
Define the design space¶
Then, we define the DesignSpace
with GEMSEO.
design_space = DesignSpace()
design_space.add_variable("x", 2, l_b=-5, u_b=5, var_type="integer")
Define the optimization problem¶
Then, we define the OptimizationProblem
with GEMSEO.
problem = OptimizationProblem(design_space)
problem.objective = objective
Solve the optimization problem using a DOE algorithm¶
We can see this optimization problem as a trade-off and solve it by means of a design of experiments (DOE), e.g. full factorial design
DOEFactory().execute(problem, "fullfact", n_samples=11**2)
INFO - 16:00:06: Optimization problem:
INFO - 16:00:06: minimize f = sum(x)
INFO - 16:00:06: with respect to x
INFO - 16:00:06: over the design space:
INFO - 16:00:06: +------+-------------+-------+-------------+---------+
INFO - 16:00:06: | name | lower_bound | value | upper_bound | type |
INFO - 16:00:06: +------+-------------+-------+-------------+---------+
INFO - 16:00:06: | x[0] | -5 | None | 5 | integer |
INFO - 16:00:06: | x[1] | -5 | None | 5 | integer |
INFO - 16:00:06: +------+-------------+-------+-------------+---------+
INFO - 16:00:06: Solving optimization problem with algorithm fullfact:
INFO - 16:00:06: ... 0%| | 0/121 [00:00<?, ?it]
INFO - 16:00:06: ... 1%| | 1/121 [00:00<00:00, 4559.03 it/sec, obj=-10]
INFO - 16:00:06: ... 2%|▏ | 2/121 [00:00<00:00, 3577.23 it/sec, obj=-9]
INFO - 16:00:06: ... 2%|▏ | 3/121 [00:00<00:00, 3368.92 it/sec, obj=-8]
INFO - 16:00:06: ... 3%|▎ | 4/121 [00:00<00:00, 3337.42 it/sec, obj=-7]
INFO - 16:00:06: ... 4%|▍ | 5/121 [00:00<00:00, 3337.82 it/sec, obj=-6]
INFO - 16:00:06: ... 5%|▍ | 6/121 [00:00<00:00, 3340.30 it/sec, obj=-5]
INFO - 16:00:06: ... 6%|▌ | 7/121 [00:00<00:00, 3346.65 it/sec, obj=-4]
INFO - 16:00:06: ... 7%|▋ | 8/121 [00:00<00:00, 3353.10 it/sec, obj=-3]
INFO - 16:00:06: ... 7%|▋ | 9/121 [00:00<00:00, 3356.94 it/sec, obj=-2]
INFO - 16:00:06: ... 8%|▊ | 10/121 [00:00<00:00, 3364.06 it/sec, obj=-1]
INFO - 16:00:06: ... 9%|▉ | 11/121 [00:00<00:00, 3370.89 it/sec, obj=0]
INFO - 16:00:06: ... 10%|▉ | 12/121 [00:00<00:00, 3376.15 it/sec, obj=-9]
INFO - 16:00:06: ... 11%|█ | 13/121 [00:00<00:00, 3333.70 it/sec, obj=-8]
INFO - 16:00:06: ... 12%|█▏ | 14/121 [00:00<00:00, 3330.32 it/sec, obj=-7]
INFO - 16:00:06: ... 12%|█▏ | 15/121 [00:00<00:00, 3334.81 it/sec, obj=-6]
INFO - 16:00:06: ... 13%|█▎ | 16/121 [00:00<00:00, 3328.48 it/sec, obj=-5]
INFO - 16:00:06: ... 14%|█▍ | 17/121 [00:00<00:00, 3329.75 it/sec, obj=-4]
INFO - 16:00:06: ... 15%|█▍ | 18/121 [00:00<00:00, 3331.16 it/sec, obj=-3]
INFO - 16:00:06: ... 16%|█▌ | 19/121 [00:00<00:00, 3335.36 it/sec, obj=-2]
INFO - 16:00:06: ... 17%|█▋ | 20/121 [00:00<00:00, 3267.74 it/sec, obj=-1]
INFO - 16:00:06: ... 17%|█▋ | 21/121 [00:00<00:00, 3266.23 it/sec, obj=0]
INFO - 16:00:06: ... 18%|█▊ | 22/121 [00:00<00:00, 3268.79 it/sec, obj=1]
INFO - 16:00:06: ... 19%|█▉ | 23/121 [00:00<00:00, 3273.69 it/sec, obj=-8]
INFO - 16:00:06: ... 20%|█▉ | 24/121 [00:00<00:00, 3278.72 it/sec, obj=-7]
INFO - 16:00:06: ... 21%|██ | 25/121 [00:00<00:00, 3282.54 it/sec, obj=-6]
INFO - 16:00:06: ... 21%|██▏ | 26/121 [00:00<00:00, 3270.12 it/sec, obj=-5]
INFO - 16:00:06: ... 22%|██▏ | 27/121 [00:00<00:00, 3274.43 it/sec, obj=-4]
INFO - 16:00:06: ... 23%|██▎ | 28/121 [00:00<00:00, 3280.28 it/sec, obj=-3]
INFO - 16:00:06: ... 24%|██▍ | 29/121 [00:00<00:00, 3279.36 it/sec, obj=-2]
INFO - 16:00:06: ... 25%|██▍ | 30/121 [00:00<00:00, 3281.59 it/sec, obj=-1]
INFO - 16:00:06: ... 26%|██▌ | 31/121 [00:00<00:00, 3285.58 it/sec, obj=0]
INFO - 16:00:06: ... 26%|██▋ | 32/121 [00:00<00:00, 3289.89 it/sec, obj=1]
INFO - 16:00:06: ... 27%|██▋ | 33/121 [00:00<00:00, 3294.50 it/sec, obj=2]
INFO - 16:00:06: ... 28%|██▊ | 34/121 [00:00<00:00, 3298.17 it/sec, obj=-7]
INFO - 16:00:06: ... 29%|██▉ | 35/121 [00:00<00:00, 3302.16 it/sec, obj=-6]
INFO - 16:00:06: ... 30%|██▉ | 36/121 [00:00<00:00, 3305.49 it/sec, obj=-5]
INFO - 16:00:06: ... 31%|███ | 37/121 [00:00<00:00, 3309.08 it/sec, obj=-4]
INFO - 16:00:06: ... 31%|███▏ | 38/121 [00:00<00:00, 3312.00 it/sec, obj=-3]
INFO - 16:00:06: ... 32%|███▏ | 39/121 [00:00<00:00, 3304.34 it/sec, obj=-2]
INFO - 16:00:06: ... 33%|███▎ | 40/121 [00:00<00:00, 3302.21 it/sec, obj=-1]
INFO - 16:00:06: ... 34%|███▍ | 41/121 [00:00<00:00, 3304.57 it/sec, obj=0]
INFO - 16:00:06: ... 35%|███▍ | 42/121 [00:00<00:00, 3304.65 it/sec, obj=1]
INFO - 16:00:06: ... 36%|███▌ | 43/121 [00:00<00:00, 3303.27 it/sec, obj=2]
INFO - 16:00:06: ... 36%|███▋ | 44/121 [00:00<00:00, 3306.57 it/sec, obj=3]
INFO - 16:00:06: ... 37%|███▋ | 45/121 [00:00<00:00, 3309.55 it/sec, obj=-6]
INFO - 16:00:06: ... 38%|███▊ | 46/121 [00:00<00:00, 3311.73 it/sec, obj=-5]
INFO - 16:00:06: ... 39%|███▉ | 47/121 [00:00<00:00, 3314.09 it/sec, obj=-4]
INFO - 16:00:06: ... 40%|███▉ | 48/121 [00:00<00:00, 3316.80 it/sec, obj=-3]
INFO - 16:00:06: ... 40%|████ | 49/121 [00:00<00:00, 3319.62 it/sec, obj=-2]
INFO - 16:00:06: ... 41%|████▏ | 50/121 [00:00<00:00, 3321.80 it/sec, obj=-1]
INFO - 16:00:06: ... 42%|████▏ | 51/121 [00:00<00:00, 3324.26 it/sec, obj=0]
INFO - 16:00:06: ... 43%|████▎ | 52/121 [00:00<00:00, 3326.88 it/sec, obj=1]
INFO - 16:00:06: ... 44%|████▍ | 53/121 [00:00<00:00, 3320.76 it/sec, obj=2]
INFO - 16:00:06: ... 45%|████▍ | 54/121 [00:00<00:00, 3321.49 it/sec, obj=3]
INFO - 16:00:06: ... 45%|████▌ | 55/121 [00:00<00:00, 3323.54 it/sec, obj=4]
INFO - 16:00:06: ... 46%|████▋ | 56/121 [00:00<00:00, 3320.86 it/sec, obj=-5]
INFO - 16:00:06: ... 47%|████▋ | 57/121 [00:00<00:00, 3322.43 it/sec, obj=-4]
INFO - 16:00:06: ... 48%|████▊ | 58/121 [00:00<00:00, 3324.81 it/sec, obj=-3]
INFO - 16:00:06: ... 49%|████▉ | 59/121 [00:00<00:00, 3326.98 it/sec, obj=-2]
INFO - 16:00:06: ... 50%|████▉ | 60/121 [00:00<00:00, 3329.25 it/sec, obj=-1]
INFO - 16:00:06: ... 50%|█████ | 61/121 [00:00<00:00, 3331.41 it/sec, obj=0]
INFO - 16:00:06: ... 51%|█████ | 62/121 [00:00<00:00, 3333.51 it/sec, obj=1]
INFO - 16:00:06: ... 52%|█████▏ | 63/121 [00:00<00:00, 3335.54 it/sec, obj=2]
INFO - 16:00:06: ... 53%|█████▎ | 64/121 [00:00<00:00, 3337.50 it/sec, obj=3]
INFO - 16:00:06: ... 54%|█████▎ | 65/121 [00:00<00:00, 3339.29 it/sec, obj=4]
INFO - 16:00:06: ... 55%|█████▍ | 66/121 [00:00<00:00, 3336.03 it/sec, obj=5]
INFO - 16:00:06: ... 55%|█████▌ | 67/121 [00:00<00:00, 3335.93 it/sec, obj=-4]
INFO - 16:00:06: ... 56%|█████▌ | 68/121 [00:00<00:00, 3337.46 it/sec, obj=-3]
INFO - 16:00:06: ... 57%|█████▋ | 69/121 [00:00<00:00, 3339.07 it/sec, obj=-2]
INFO - 16:00:06: ... 58%|█████▊ | 70/121 [00:00<00:00, 3336.34 it/sec, obj=-1]
INFO - 16:00:06: ... 59%|█████▊ | 71/121 [00:00<00:00, 3337.69 it/sec, obj=0]
INFO - 16:00:06: ... 60%|█████▉ | 72/121 [00:00<00:00, 3339.23 it/sec, obj=1]
INFO - 16:00:06: ... 60%|██████ | 73/121 [00:00<00:00, 3341.02 it/sec, obj=2]
INFO - 16:00:06: ... 61%|██████ | 74/121 [00:00<00:00, 3342.58 it/sec, obj=3]
INFO - 16:00:06: ... 62%|██████▏ | 75/121 [00:00<00:00, 3344.03 it/sec, obj=4]
INFO - 16:00:06: ... 63%|██████▎ | 76/121 [00:00<00:00, 3345.16 it/sec, obj=5]
INFO - 16:00:06: ... 64%|██████▎ | 77/121 [00:00<00:00, 3346.44 it/sec, obj=6]
INFO - 16:00:06: ... 64%|██████▍ | 78/121 [00:00<00:00, 3347.65 it/sec, obj=-3]
INFO - 16:00:06: ... 65%|██████▌ | 79/121 [00:00<00:00, 3349.07 it/sec, obj=-2]
INFO - 16:00:06: ... 66%|██████▌ | 80/121 [00:00<00:00, 3345.97 it/sec, obj=-1]
INFO - 16:00:06: ... 67%|██████▋ | 81/121 [00:00<00:00, 3346.65 it/sec, obj=0]
INFO - 16:00:06: ... 68%|██████▊ | 82/121 [00:00<00:00, 3347.15 it/sec, obj=1]
INFO - 16:00:06: ... 69%|██████▊ | 83/121 [00:00<00:00, 3346.32 it/sec, obj=2]
INFO - 16:00:06: ... 69%|██████▉ | 84/121 [00:00<00:00, 3346.52 it/sec, obj=3]
INFO - 16:00:06: ... 70%|███████ | 85/121 [00:00<00:00, 3347.63 it/sec, obj=4]
INFO - 16:00:06: ... 71%|███████ | 86/121 [00:00<00:00, 3348.00 it/sec, obj=5]
INFO - 16:00:06: ... 72%|███████▏ | 87/121 [00:00<00:00, 3349.31 it/sec, obj=6]
INFO - 16:00:06: ... 73%|███████▎ | 88/121 [00:00<00:00, 3350.57 it/sec, obj=7]
INFO - 16:00:06: ... 74%|███████▎ | 89/121 [00:00<00:00, 3352.16 it/sec, obj=-2]
INFO - 16:00:06: ... 74%|███████▍ | 90/121 [00:00<00:00, 3353.03 it/sec, obj=-1]
INFO - 16:00:06: ... 75%|███████▌ | 91/121 [00:00<00:00, 3354.26 it/sec, obj=0]
INFO - 16:00:06: ... 76%|███████▌ | 92/121 [00:00<00:00, 3355.30 it/sec, obj=1]
INFO - 16:00:06: ... 77%|███████▋ | 93/121 [00:00<00:00, 3353.34 it/sec, obj=2]
INFO - 16:00:06: ... 78%|███████▊ | 94/121 [00:00<00:00, 3352.76 it/sec, obj=3]
INFO - 16:00:06: ... 79%|███████▊ | 95/121 [00:00<00:00, 3353.47 it/sec, obj=4]
INFO - 16:00:06: ... 79%|███████▉ | 96/121 [00:00<00:00, 3354.55 it/sec, obj=5]
INFO - 16:00:06: ... 80%|████████ | 97/121 [00:00<00:00, 3353.04 it/sec, obj=6]
INFO - 16:00:06: ... 81%|████████ | 98/121 [00:00<00:00, 3352.90 it/sec, obj=7]
INFO - 16:00:06: ... 82%|████████▏ | 99/121 [00:00<00:00, 3353.76 it/sec, obj=8]
INFO - 16:00:06: ... 83%|████████▎ | 100/121 [00:00<00:00, 3354.58 it/sec, obj=-1]
INFO - 16:00:06: ... 83%|████████▎ | 101/121 [00:00<00:00, 3355.50 it/sec, obj=0]
INFO - 16:00:06: ... 84%|████████▍ | 102/121 [00:00<00:00, 3356.47 it/sec, obj=1]
INFO - 16:00:06: ... 85%|████████▌ | 103/121 [00:00<00:00, 3357.45 it/sec, obj=2]
INFO - 16:00:06: ... 86%|████████▌ | 104/121 [00:00<00:00, 3358.21 it/sec, obj=3]
INFO - 16:00:06: ... 87%|████████▋ | 105/121 [00:00<00:00, 3359.38 it/sec, obj=4]
INFO - 16:00:06: ... 88%|████████▊ | 106/121 [00:00<00:00, 3360.13 it/sec, obj=5]
INFO - 16:00:06: ... 88%|████████▊ | 107/121 [00:00<00:00, 3356.57 it/sec, obj=6]
INFO - 16:00:06: ... 89%|████████▉ | 108/121 [00:00<00:00, 3357.03 it/sec, obj=7]
INFO - 16:00:06: ... 90%|█████████ | 109/121 [00:00<00:00, 3357.56 it/sec, obj=8]
INFO - 16:00:06: ... 91%|█████████ | 110/121 [00:00<00:00, 3357.01 it/sec, obj=9]
INFO - 16:00:06: ... 92%|█████████▏| 111/121 [00:00<00:00, 3357.14 it/sec, obj=0]
INFO - 16:00:06: ... 93%|█████████▎| 112/121 [00:00<00:00, 3357.67 it/sec, obj=1]
INFO - 16:00:06: ... 93%|█████████▎| 113/121 [00:00<00:00, 3358.39 it/sec, obj=2]
INFO - 16:00:06: ... 94%|█████████▍| 114/121 [00:00<00:00, 3359.17 it/sec, obj=3]
INFO - 16:00:06: ... 95%|█████████▌| 115/121 [00:00<00:00, 3359.93 it/sec, obj=4]
INFO - 16:00:06: ... 96%|█████████▌| 116/121 [00:00<00:00, 3360.77 it/sec, obj=5]
INFO - 16:00:06: ... 97%|█████████▋| 117/121 [00:00<00:00, 3361.70 it/sec, obj=6]
INFO - 16:00:06: ... 98%|█████████▊| 118/121 [00:00<00:00, 3362.26 it/sec, obj=7]
INFO - 16:00:06: ... 98%|█████████▊| 119/121 [00:00<00:00, 3362.99 it/sec, obj=8]
INFO - 16:00:06: ... 99%|█████████▉| 120/121 [00:00<00:00, 3354.33 it/sec, obj=9]
INFO - 16:00:06: ... 100%|██████████| 121/121 [00:00<00:00, 3337.13 it/sec, obj=10]
INFO - 16:00:06: Optimization result:
INFO - 16:00:06: Optimizer info:
INFO - 16:00:06: Status: None
INFO - 16:00:06: Message: None
INFO - 16:00:06: Number of calls to the objective function by the optimizer: 121
INFO - 16:00:06: Solution:
INFO - 16:00:06: Objective: -10.0
INFO - 16:00:06: Design space:
INFO - 16:00:06: +------+-------------+-------+-------------+---------+
INFO - 16:00:06: | name | lower_bound | value | upper_bound | type |
INFO - 16:00:06: +------+-------------+-------+-------------+---------+
INFO - 16:00:06: | x[0] | -5 | -5 | 5 | integer |
INFO - 16:00:06: | x[1] | -5 | -5 | 5 | integer |
INFO - 16:00:06: +------+-------------+-------+-------------+---------+
Optimization result:
Design variables: [-5. -5.]
Objective function: -10.0
Feasible solution: True
Post-process the results¶
execute_post(
problem,
"ScatterPlotMatrix",
variable_names=["x", "f"],
save=False,
show=True,
)

<gemseo.post.scatter_mat.ScatterPlotMatrix object at 0x7ff1aefc68e0>
Note that you can get all the optimization algorithms names:
algo_list = DOEFactory().algorithms
print("Available algorithms ", algo_list)
Available algorithms ['CustomDOE', 'DiagonalDOE', 'OT_SOBOL', 'OT_RANDOM', 'OT_HASELGROVE', 'OT_REVERSE_HALTON', 'OT_HALTON', 'OT_FAURE', 'OT_MONTE_CARLO', 'OT_FACTORIAL', 'OT_COMPOSITE', 'OT_AXIAL', 'OT_OPT_LHS', 'OT_LHS', 'OT_LHSC', 'OT_FULLFACT', 'OT_SOBOL_INDICES', 'fullfact', 'ff2n', 'pbdesign', 'bbdesign', 'ccdesign', 'lhs']
Total running time of the script: ( 0 minutes 0.681 seconds)