Note
Go to the end to download the full example code
Analytical test case # 3¶
In this example, we consider a simple optimization problem to illustrate algorithms interfaces and DOE libraries integration. Integer variables are used
Imports¶
from __future__ import annotations
from gemseo import configure_logger
from gemseo import execute_post
from gemseo.algos.design_space import DesignSpace
from gemseo.algos.doe.doe_factory import DOEFactory
from gemseo.algos.opt_problem import OptimizationProblem
from gemseo.core.mdofunctions.mdo_function import MDOFunction
from numpy import sum as np_sum
LOGGER = configure_logger()
Define the objective function¶
We define the objective function \(f(x)=\sum_{i=1}^dx_i\)
using an MDOFunction
.
objective = MDOFunction(np_sum, name="f", expr="sum(x)")
Define the design space¶
Then, we define the DesignSpace
with GEMSEO.
design_space = DesignSpace()
design_space.add_variable("x", 2, l_b=-5, u_b=5, var_type="integer")
Define the optimization problem¶
Then, we define the OptimizationProblem
with GEMSEO.
problem = OptimizationProblem(design_space)
problem.objective = objective
Solve the optimization problem using a DOE algorithm¶
We can see this optimization problem as a trade-off and solve it by means of a design of experiments (DOE), e.g. full factorial design
DOEFactory().execute(problem, "fullfact", n_samples=11**2)
INFO - 08:22:37: Optimization problem:
INFO - 08:22:37: minimize f = sum(x)
INFO - 08:22:37: with respect to x
INFO - 08:22:37: over the design space:
INFO - 08:22:37: +------+-------------+-------+-------------+---------+
INFO - 08:22:37: | name | lower_bound | value | upper_bound | type |
INFO - 08:22:37: +------+-------------+-------+-------------+---------+
INFO - 08:22:37: | x[0] | -5 | None | 5 | integer |
INFO - 08:22:37: | x[1] | -5 | None | 5 | integer |
INFO - 08:22:37: +------+-------------+-------+-------------+---------+
INFO - 08:22:37: Solving optimization problem with algorithm fullfact:
INFO - 08:22:37: ... 0%| | 0/121 [00:00<?, ?it]
INFO - 08:22:37: ... 1%| | 1/121 [00:00<00:00, 3833.92 it/sec, obj=-10]
INFO - 08:22:37: ... 2%|▏ | 2/121 [00:00<00:00, 3131.25 it/sec, obj=-9]
INFO - 08:22:37: ... 2%|▏ | 3/121 [00:00<00:00, 3003.08 it/sec, obj=-8]
INFO - 08:22:37: ... 3%|▎ | 4/121 [00:00<00:00, 2962.60 it/sec, obj=-7]
INFO - 08:22:37: ... 4%|▍ | 5/121 [00:00<00:00, 2896.22 it/sec, obj=-6]
INFO - 08:22:37: ... 5%|▍ | 6/121 [00:00<00:00, 2886.98 it/sec, obj=-5]
INFO - 08:22:37: ... 6%|▌ | 7/121 [00:00<00:00, 2884.10 it/sec, obj=-4]
INFO - 08:22:37: ... 7%|▋ | 8/121 [00:00<00:00, 2882.44 it/sec, obj=-3]
INFO - 08:22:37: ... 7%|▋ | 9/121 [00:00<00:00, 2858.24 it/sec, obj=-2]
INFO - 08:22:37: ... 8%|▊ | 10/121 [00:00<00:00, 2748.74 it/sec, obj=-1]
INFO - 08:22:37: ... 9%|▉ | 11/121 [00:00<00:00, 2750.69 it/sec, obj=0]
INFO - 08:22:37: ... 10%|▉ | 12/121 [00:00<00:00, 2757.14 it/sec, obj=-9]
INFO - 08:22:37: ... 11%|█ | 13/121 [00:00<00:00, 2763.75 it/sec, obj=-8]
INFO - 08:22:37: ... 12%|█▏ | 14/121 [00:00<00:00, 2771.78 it/sec, obj=-7]
INFO - 08:22:37: ... 12%|█▏ | 15/121 [00:00<00:00, 2779.16 it/sec, obj=-6]
INFO - 08:22:37: ... 13%|█▎ | 16/121 [00:00<00:00, 2775.04 it/sec, obj=-5]
INFO - 08:22:37: ... 14%|█▍ | 17/121 [00:00<00:00, 2780.50 it/sec, obj=-4]
INFO - 08:22:37: ... 15%|█▍ | 18/121 [00:00<00:00, 2786.30 it/sec, obj=-3]
INFO - 08:22:37: ... 16%|█▌ | 19/121 [00:00<00:00, 2792.19 it/sec, obj=-2]
INFO - 08:22:37: ... 17%|█▋ | 20/121 [00:00<00:00, 2780.72 it/sec, obj=-1]
INFO - 08:22:37: ... 17%|█▋ | 21/121 [00:00<00:00, 2776.90 it/sec, obj=0]
INFO - 08:22:37: ... 18%|█▊ | 22/121 [00:00<00:00, 2779.11 it/sec, obj=1]
INFO - 08:22:37: ... 19%|█▉ | 23/121 [00:00<00:00, 2781.93 it/sec, obj=-8]
INFO - 08:22:37: ... 20%|█▉ | 24/121 [00:00<00:00, 2785.14 it/sec, obj=-7]
INFO - 08:22:37: ... 21%|██ | 25/121 [00:00<00:00, 2786.62 it/sec, obj=-6]
INFO - 08:22:37: ... 21%|██▏ | 26/121 [00:00<00:00, 2789.27 it/sec, obj=-5]
INFO - 08:22:37: ... 22%|██▏ | 27/121 [00:00<00:00, 2784.38 it/sec, obj=-4]
INFO - 08:22:37: ... 23%|██▎ | 28/121 [00:00<00:00, 2785.86 it/sec, obj=-3]
INFO - 08:22:37: ... 24%|██▍ | 29/121 [00:00<00:00, 2788.38 it/sec, obj=-2]
INFO - 08:22:37: ... 25%|██▍ | 30/121 [00:00<00:00, 2790.44 it/sec, obj=-1]
INFO - 08:22:37: ... 26%|██▌ | 31/121 [00:00<00:00, 2793.32 it/sec, obj=0]
INFO - 08:22:37: ... 26%|██▋ | 32/121 [00:00<00:00, 2786.05 it/sec, obj=1]
INFO - 08:22:37: ... 27%|██▋ | 33/121 [00:00<00:00, 2787.53 it/sec, obj=2]
INFO - 08:22:37: ... 28%|██▊ | 34/121 [00:00<00:00, 2788.82 it/sec, obj=-7]
INFO - 08:22:37: ... 29%|██▉ | 35/121 [00:00<00:00, 2790.83 it/sec, obj=-6]
INFO - 08:22:37: ... 30%|██▉ | 36/121 [00:00<00:00, 2792.89 it/sec, obj=-5]
INFO - 08:22:37: ... 31%|███ | 37/121 [00:00<00:00, 2795.15 it/sec, obj=-4]
INFO - 08:22:37: ... 31%|███▏ | 38/121 [00:00<00:00, 2793.26 it/sec, obj=-3]
INFO - 08:22:37: ... 32%|███▏ | 39/121 [00:00<00:00, 2794.48 it/sec, obj=-2]
INFO - 08:22:37: ... 33%|███▎ | 40/121 [00:00<00:00, 2796.16 it/sec, obj=-1]
INFO - 08:22:37: ... 34%|███▍ | 41/121 [00:00<00:00, 2798.30 it/sec, obj=0]
INFO - 08:22:37: ... 35%|███▍ | 42/121 [00:00<00:00, 2800.34 it/sec, obj=1]
INFO - 08:22:37: ... 36%|███▌ | 43/121 [00:00<00:00, 2795.47 it/sec, obj=2]
INFO - 08:22:37: ... 36%|███▋ | 44/121 [00:00<00:00, 2796.37 it/sec, obj=3]
INFO - 08:22:37: ... 37%|███▋ | 45/121 [00:00<00:00, 2798.36 it/sec, obj=-6]
INFO - 08:22:37: ... 38%|███▊ | 46/121 [00:00<00:00, 2800.38 it/sec, obj=-5]
INFO - 08:22:37: ... 39%|███▉ | 47/121 [00:00<00:00, 2801.93 it/sec, obj=-4]
INFO - 08:22:37: ... 40%|███▉ | 48/121 [00:00<00:00, 2803.41 it/sec, obj=-3]
INFO - 08:22:37: ... 40%|████ | 49/121 [00:00<00:00, 2802.91 it/sec, obj=-2]
INFO - 08:22:37: ... 41%|████▏ | 50/121 [00:00<00:00, 2802.93 it/sec, obj=-1]
INFO - 08:22:37: ... 42%|████▏ | 51/121 [00:00<00:00, 2804.49 it/sec, obj=0]
INFO - 08:22:37: ... 43%|████▎ | 52/121 [00:00<00:00, 2805.92 it/sec, obj=1]
INFO - 08:22:37: ... 44%|████▍ | 53/121 [00:00<00:00, 2807.18 it/sec, obj=2]
INFO - 08:22:37: ... 45%|████▍ | 54/121 [00:00<00:00, 2803.99 it/sec, obj=3]
INFO - 08:22:37: ... 45%|████▌ | 55/121 [00:00<00:00, 2804.12 it/sec, obj=4]
INFO - 08:22:37: ... 46%|████▋ | 56/121 [00:00<00:00, 2805.55 it/sec, obj=-5]
INFO - 08:22:37: ... 47%|████▋ | 57/121 [00:00<00:00, 2806.97 it/sec, obj=-4]
INFO - 08:22:37: ... 48%|████▊ | 58/121 [00:00<00:00, 2808.05 it/sec, obj=-3]
INFO - 08:22:37: ... 49%|████▉ | 59/121 [00:00<00:00, 2809.15 it/sec, obj=-2]
INFO - 08:22:37: ... 50%|████▉ | 60/121 [00:00<00:00, 2809.85 it/sec, obj=-1]
INFO - 08:22:37: ... 50%|█████ | 61/121 [00:00<00:00, 2807.86 it/sec, obj=0]
INFO - 08:22:37: ... 51%|█████ | 62/121 [00:00<00:00, 2808.65 it/sec, obj=1]
INFO - 08:22:37: ... 52%|█████▏ | 63/121 [00:00<00:00, 2809.79 it/sec, obj=2]
INFO - 08:22:37: ... 53%|█████▎ | 64/121 [00:00<00:00, 2811.11 it/sec, obj=3]
INFO - 08:22:37: ... 54%|█████▎ | 65/121 [00:00<00:00, 2812.38 it/sec, obj=4]
INFO - 08:22:37: ... 55%|█████▍ | 66/121 [00:00<00:00, 2809.03 it/sec, obj=5]
INFO - 08:22:37: ... 55%|█████▌ | 67/121 [00:00<00:00, 2809.68 it/sec, obj=-4]
INFO - 08:22:37: ... 56%|█████▌ | 68/121 [00:00<00:00, 2803.16 it/sec, obj=-3]
INFO - 08:22:37: ... 57%|█████▋ | 69/121 [00:00<00:00, 2803.81 it/sec, obj=-2]
INFO - 08:22:37: ... 58%|█████▊ | 70/121 [00:00<00:00, 2804.88 it/sec, obj=-1]
INFO - 08:22:37: ... 59%|█████▊ | 71/121 [00:00<00:00, 2806.06 it/sec, obj=0]
INFO - 08:22:37: ... 60%|█████▉ | 72/121 [00:00<00:00, 2804.98 it/sec, obj=1]
INFO - 08:22:37: ... 60%|██████ | 73/121 [00:00<00:00, 2805.79 it/sec, obj=2]
INFO - 08:22:37: ... 61%|██████ | 74/121 [00:00<00:00, 2807.03 it/sec, obj=3]
INFO - 08:22:37: ... 62%|██████▏ | 75/121 [00:00<00:00, 2808.13 it/sec, obj=4]
INFO - 08:22:37: ... 63%|██████▎ | 76/121 [00:00<00:00, 2809.19 it/sec, obj=5]
INFO - 08:22:37: ... 64%|██████▎ | 77/121 [00:00<00:00, 2806.68 it/sec, obj=6]
INFO - 08:22:37: ... 64%|██████▍ | 78/121 [00:00<00:00, 2807.22 it/sec, obj=-3]
INFO - 08:22:37: ... 65%|██████▌ | 79/121 [00:00<00:00, 2808.15 it/sec, obj=-2]
INFO - 08:22:37: ... 66%|██████▌ | 80/121 [00:00<00:00, 2809.12 it/sec, obj=-1]
INFO - 08:22:37: ... 67%|██████▋ | 81/121 [00:00<00:00, 2809.80 it/sec, obj=0]
INFO - 08:22:37: ... 68%|██████▊ | 82/121 [00:00<00:00, 2810.48 it/sec, obj=1]
INFO - 08:22:37: ... 69%|██████▊ | 83/121 [00:00<00:00, 2809.81 it/sec, obj=2]
INFO - 08:22:37: ... 69%|██████▉ | 84/121 [00:00<00:00, 2810.25 it/sec, obj=3]
INFO - 08:22:37: ... 70%|███████ | 85/121 [00:00<00:00, 2811.15 it/sec, obj=4]
INFO - 08:22:37: ... 71%|███████ | 86/121 [00:00<00:00, 2811.77 it/sec, obj=5]
INFO - 08:22:37: ... 72%|███████▏ | 87/121 [00:00<00:00, 2812.56 it/sec, obj=6]
INFO - 08:22:37: ... 73%|███████▎ | 88/121 [00:00<00:00, 2804.91 it/sec, obj=7]
INFO - 08:22:37: ... 74%|███████▎ | 89/121 [00:00<00:00, 2803.76 it/sec, obj=-2]
INFO - 08:22:37: ... 74%|███████▍ | 90/121 [00:00<00:00, 2804.12 it/sec, obj=-1]
INFO - 08:22:37: ... 75%|███████▌ | 91/121 [00:00<00:00, 2804.75 it/sec, obj=0]
INFO - 08:22:37: ... 76%|███████▌ | 92/121 [00:00<00:00, 2805.43 it/sec, obj=1]
INFO - 08:22:37: ... 77%|███████▋ | 93/121 [00:00<00:00, 2806.42 it/sec, obj=2]
INFO - 08:22:37: ... 78%|███████▊ | 94/121 [00:00<00:00, 2806.19 it/sec, obj=3]
INFO - 08:22:37: ... 79%|███████▊ | 95/121 [00:00<00:00, 2806.21 it/sec, obj=4]
INFO - 08:22:37: ... 79%|███████▉ | 96/121 [00:00<00:00, 2807.08 it/sec, obj=5]
INFO - 08:22:37: ... 80%|████████ | 97/121 [00:00<00:00, 2807.80 it/sec, obj=6]
INFO - 08:22:37: ... 81%|████████ | 98/121 [00:00<00:00, 2808.43 it/sec, obj=7]
INFO - 08:22:37: ... 82%|████████▏ | 99/121 [00:00<00:00, 2806.77 it/sec, obj=8]
INFO - 08:22:37: ... 83%|████████▎ | 100/121 [00:00<00:00, 2806.77 it/sec, obj=-1]
INFO - 08:22:37: ... 83%|████████▎ | 101/121 [00:00<00:00, 2807.40 it/sec, obj=0]
INFO - 08:22:37: ... 84%|████████▍ | 102/121 [00:00<00:00, 2808.22 it/sec, obj=1]
INFO - 08:22:37: ... 85%|████████▌ | 103/121 [00:00<00:00, 2808.91 it/sec, obj=2]
INFO - 08:22:37: ... 86%|████████▌ | 104/121 [00:00<00:00, 2809.58 it/sec, obj=3]
INFO - 08:22:37: ... 87%|████████▋ | 105/121 [00:00<00:00, 2810.64 it/sec, obj=4]
INFO - 08:22:37: ... 88%|████████▊ | 106/121 [00:00<00:00, 2810.01 it/sec, obj=5]
INFO - 08:22:37: ... 88%|████████▊ | 107/121 [00:00<00:00, 2810.79 it/sec, obj=6]
INFO - 08:22:37: ... 89%|████████▉ | 108/121 [00:00<00:00, 2811.79 it/sec, obj=7]
INFO - 08:22:37: ... 90%|█████████ | 109/121 [00:00<00:00, 2812.27 it/sec, obj=8]
INFO - 08:22:37: ... 91%|█████████ | 110/121 [00:00<00:00, 2813.06 it/sec, obj=9]
INFO - 08:22:37: ... 92%|█████████▏| 111/121 [00:00<00:00, 2811.42 it/sec, obj=0]
INFO - 08:22:37: ... 93%|█████████▎| 112/121 [00:00<00:00, 2811.92 it/sec, obj=1]
INFO - 08:22:37: ... 93%|█████████▎| 113/121 [00:00<00:00, 2812.75 it/sec, obj=2]
INFO - 08:22:37: ... 94%|█████████▍| 114/121 [00:00<00:00, 2802.64 it/sec, obj=3]
INFO - 08:22:37: ... 95%|█████████▌| 115/121 [00:00<00:00, 2789.01 it/sec, obj=4]
INFO - 08:22:37: ... 96%|█████████▌| 116/121 [00:00<00:00, 2780.02 it/sec, obj=5]
INFO - 08:22:37: ... 97%|█████████▋| 117/121 [00:00<00:00, 2774.23 it/sec, obj=6]
INFO - 08:22:37: ... 98%|█████████▊| 118/121 [00:00<00:00, 2767.46 it/sec, obj=7]
INFO - 08:22:37: ... 98%|█████████▊| 119/121 [00:00<00:00, 2767.00 it/sec, obj=8]
INFO - 08:22:37: ... 99%|█████████▉| 120/121 [00:00<00:00, 2765.16 it/sec, obj=9]
INFO - 08:22:37: ... 100%|██████████| 121/121 [00:00<00:00, 2765.41 it/sec, obj=10]
INFO - 08:22:37: Optimization result:
INFO - 08:22:37: Optimizer info:
INFO - 08:22:37: Status: None
INFO - 08:22:37: Message: None
INFO - 08:22:37: Number of calls to the objective function by the optimizer: 121
INFO - 08:22:37: Solution:
INFO - 08:22:37: Objective: -10.0
INFO - 08:22:37: Design space:
INFO - 08:22:37: +------+-------------+-------+-------------+---------+
INFO - 08:22:37: | name | lower_bound | value | upper_bound | type |
INFO - 08:22:37: +------+-------------+-------+-------------+---------+
INFO - 08:22:37: | x[0] | -5 | -5 | 5 | integer |
INFO - 08:22:37: | x[1] | -5 | -5 | 5 | integer |
INFO - 08:22:37: +------+-------------+-------+-------------+---------+
Post-process the results¶
execute_post(
problem,
"ScatterPlotMatrix",
variable_names=["x", "f"],
save=False,
show=True,
)

<gemseo.post.scatter_mat.ScatterPlotMatrix object at 0x7f1cb49bd940>
Note that you can get all the optimization algorithms names:
DOEFactory().algorithms
['CustomDOE', 'DiagonalDOE', 'OT_SOBOL', 'OT_RANDOM', 'OT_HASELGROVE', 'OT_REVERSE_HALTON', 'OT_HALTON', 'OT_FAURE', 'OT_MONTE_CARLO', 'OT_FACTORIAL', 'OT_COMPOSITE', 'OT_AXIAL', 'OT_OPT_LHS', 'OT_LHS', 'OT_LHSC', 'OT_FULLFACT', 'OT_SOBOL_INDICES', 'fullfact', 'ff2n', 'pbdesign', 'bbdesign', 'ccdesign', 'lhs']
Total running time of the script: (0 minutes 0.748 seconds)