Analytical test case # 3#

In this example, we consider a simple optimization problem to illustrate algorithms interfaces and DOE libraries integration. Integer variables are used

Imports#

from __future__ import annotations

from numpy import sum as np_sum

from gemseo import configure_logger
from gemseo import execute_algo
from gemseo import execute_post
from gemseo import get_available_doe_algorithms
from gemseo import get_available_opt_algorithms
from gemseo.algos.design_space import DesignSpace
from gemseo.algos.optimization_problem import OptimizationProblem
from gemseo.core.mdo_functions.mdo_function import MDOFunction

LOGGER = configure_logger()

Define the objective function#

We define the objective function \(f(x)=\sum_{i=1}^dx_i\) using an MDOFunction.

objective = MDOFunction(np_sum, name="f", expr="sum(x)")

Define the design space#

Then, we define the DesignSpace with GEMSEO.

design_space = DesignSpace()
design_space.add_variable("x", 2, lower_bound=-5, upper_bound=5, type_="integer")

Define the optimization problem#

Then, we define the OptimizationProblem with GEMSEO.

problem = OptimizationProblem(design_space)
problem.objective = objective

Solve the optimization problem using a DOE algorithm#

We can see this optimization problem as a trade-off and solve it by means of a design of experiments (DOE), e.g. full factorial design

execute_algo(problem, algo_name="PYDOE_FULLFACT", n_samples=11**2, algo_type="doe")
INFO - 08:35:47: Optimization problem:
INFO - 08:35:47:    minimize f = sum(x)
INFO - 08:35:47:    with respect to x
INFO - 08:35:47:    over the design space:
INFO - 08:35:47:       +------+-------------+-------+-------------+---------+
INFO - 08:35:47:       | Name | Lower bound | Value | Upper bound | Type    |
INFO - 08:35:47:       +------+-------------+-------+-------------+---------+
INFO - 08:35:47:       | x[0] |      -5     |  None |      5      | integer |
INFO - 08:35:47:       | x[1] |      -5     |  None |      5      | integer |
INFO - 08:35:47:       +------+-------------+-------+-------------+---------+
INFO - 08:35:47: Solving optimization problem with algorithm PYDOE_FULLFACT:
INFO - 08:35:47:      1%|          | 1/121 [00:00<00:00, 4957.81 it/sec, obj=-10]
INFO - 08:35:47:      2%|▏         | 2/121 [00:00<00:00, 3826.92 it/sec, obj=-9]
INFO - 08:35:47:      2%|▏         | 3/121 [00:00<00:00, 3744.91 it/sec, obj=-8]
INFO - 08:35:47:      3%|▎         | 4/121 [00:00<00:00, 3733.25 it/sec, obj=-7]
INFO - 08:35:47:      4%|▍         | 5/121 [00:00<00:00, 3744.91 it/sec, obj=-6]
INFO - 08:35:47:      5%|▍         | 6/121 [00:00<00:00, 3756.09 it/sec, obj=-5]
INFO - 08:35:47:      6%|▌         | 7/121 [00:00<00:00, 3773.80 it/sec, obj=-4]
INFO - 08:35:47:      7%|▋         | 8/121 [00:00<00:00, 3777.80 it/sec, obj=-3]
INFO - 08:35:47:      7%|▋         | 9/121 [00:00<00:00, 3784.71 it/sec, obj=-2]
INFO - 08:35:47:      8%|▊         | 10/121 [00:00<00:00, 3790.60 it/sec, obj=-1]
INFO - 08:35:47:      9%|▉         | 11/121 [00:00<00:00, 3798.25 it/sec, obj=0]
INFO - 08:35:47:     10%|▉         | 12/121 [00:00<00:00, 3776.38 it/sec, obj=-9]
INFO - 08:35:47:     11%|█         | 13/121 [00:00<00:00, 3778.91 it/sec, obj=-8]
INFO - 08:35:47:     12%|█▏        | 14/121 [00:00<00:00, 3728.27 it/sec, obj=-7]
INFO - 08:35:47:     12%|█▏        | 15/121 [00:00<00:00, 3726.95 it/sec, obj=-6]
INFO - 08:35:47:     13%|█▎        | 16/121 [00:00<00:00, 3734.70 it/sec, obj=-5]
INFO - 08:35:47:     14%|█▍        | 17/121 [00:00<00:00, 3742.36 it/sec, obj=-4]
INFO - 08:35:47:     15%|█▍        | 18/121 [00:00<00:00, 3748.63 it/sec, obj=-3]
INFO - 08:35:47:     16%|█▌        | 19/121 [00:00<00:00, 3755.15 it/sec, obj=-2]
INFO - 08:35:47:     17%|█▋        | 20/121 [00:00<00:00, 3761.71 it/sec, obj=-1]
INFO - 08:35:47:     17%|█▋        | 21/121 [00:00<00:00, 3770.08 it/sec, obj=0]
INFO - 08:35:47:     18%|█▊        | 22/121 [00:00<00:00, 3794.19 it/sec, obj=1]
INFO - 08:35:47:     19%|█▉        | 23/121 [00:00<00:00, 3816.02 it/sec, obj=-8]
INFO - 08:35:47:     20%|█▉        | 24/121 [00:00<00:00, 3837.86 it/sec, obj=-7]
INFO - 08:35:47:     21%|██        | 25/121 [00:00<00:00, 3857.33 it/sec, obj=-6]
INFO - 08:35:47:     21%|██▏       | 26/121 [00:00<00:00, 3849.75 it/sec, obj=-5]
INFO - 08:35:47:     22%|██▏       | 27/121 [00:00<00:00, 3843.28 it/sec, obj=-4]
INFO - 08:35:47:     23%|██▎       | 28/121 [00:00<00:00, 3838.05 it/sec, obj=-3]
INFO - 08:35:47:     24%|██▍       | 29/121 [00:00<00:00, 3822.71 it/sec, obj=-2]
INFO - 08:35:47:     25%|██▍       | 30/121 [00:00<00:00, 3814.97 it/sec, obj=-1]
INFO - 08:35:47:     26%|██▌       | 31/121 [00:00<00:00, 3814.57 it/sec, obj=0]
INFO - 08:35:47:     26%|██▋       | 32/121 [00:00<00:00, 3815.82 it/sec, obj=1]
INFO - 08:35:47:     27%|██▋       | 33/121 [00:00<00:00, 3817.95 it/sec, obj=2]
INFO - 08:35:47:     28%|██▊       | 34/121 [00:00<00:00, 3819.44 it/sec, obj=-7]
INFO - 08:35:47:     29%|██▉       | 35/121 [00:00<00:00, 3820.45 it/sec, obj=-6]
INFO - 08:35:47:     30%|██▉       | 36/121 [00:00<00:00, 3822.37 it/sec, obj=-5]
INFO - 08:35:47:     31%|███       | 37/121 [00:00<00:00, 3824.47 it/sec, obj=-4]
INFO - 08:35:47:     31%|███▏      | 38/121 [00:00<00:00, 3825.73 it/sec, obj=-3]
INFO - 08:35:47:     32%|███▏      | 39/121 [00:00<00:00, 3827.37 it/sec, obj=-2]
INFO - 08:35:47:     33%|███▎      | 40/121 [00:00<00:00, 3829.02 it/sec, obj=-1]
INFO - 08:35:47:     34%|███▍      | 41/121 [00:00<00:00, 3830.76 it/sec, obj=0]
INFO - 08:35:47:     35%|███▍      | 42/121 [00:00<00:00, 3833.00 it/sec, obj=1]
INFO - 08:35:47:     36%|███▌      | 43/121 [00:00<00:00, 3820.84 it/sec, obj=2]
INFO - 08:35:47:     36%|███▋      | 44/121 [00:00<00:00, 3820.98 it/sec, obj=3]
INFO - 08:35:47:     37%|███▋      | 45/121 [00:00<00:00, 3803.17 it/sec, obj=-6]
INFO - 08:35:47:     38%|███▊      | 46/121 [00:00<00:00, 3802.56 it/sec, obj=-5]
INFO - 08:35:47:     39%|███▉      | 47/121 [00:00<00:00, 3803.22 it/sec, obj=-4]
INFO - 08:35:47:     40%|███▉      | 48/121 [00:00<00:00, 3804.50 it/sec, obj=-3]
INFO - 08:35:47:     40%|████      | 49/121 [00:00<00:00, 3770.82 it/sec, obj=-2]
INFO - 08:35:47:     41%|████▏     | 50/121 [00:00<00:00, 3768.47 it/sec, obj=-1]
INFO - 08:35:47:     42%|████▏     | 51/121 [00:00<00:00, 3770.06 it/sec, obj=0]
INFO - 08:35:47:     43%|████▎     | 52/121 [00:00<00:00, 3771.99 it/sec, obj=1]
INFO - 08:35:47:     44%|████▍     | 53/121 [00:00<00:00, 3773.65 it/sec, obj=2]
INFO - 08:35:47:     45%|████▍     | 54/121 [00:00<00:00, 3776.76 it/sec, obj=3]
INFO - 08:35:47:     45%|████▌     | 55/121 [00:00<00:00, 3775.81 it/sec, obj=4]
INFO - 08:35:47:     46%|████▋     | 56/121 [00:00<00:00, 3777.80 it/sec, obj=-5]
INFO - 08:35:47:     47%|████▋     | 57/121 [00:00<00:00, 3773.64 it/sec, obj=-4]
INFO - 08:35:47:     48%|████▊     | 58/121 [00:00<00:00, 3773.55 it/sec, obj=-3]
INFO - 08:35:47:     49%|████▉     | 59/121 [00:00<00:00, 3767.03 it/sec, obj=-2]
INFO - 08:35:47:     50%|████▉     | 60/121 [00:00<00:00, 3766.94 it/sec, obj=-1]
INFO - 08:35:47:     50%|█████     | 61/121 [00:00<00:00, 3768.41 it/sec, obj=0]
INFO - 08:35:47:     51%|█████     | 62/121 [00:00<00:00, 3770.00 it/sec, obj=1]
INFO - 08:35:47:     52%|█████▏    | 63/121 [00:00<00:00, 3771.75 it/sec, obj=2]
INFO - 08:35:47:     53%|█████▎    | 64/121 [00:00<00:00, 3773.55 it/sec, obj=3]
INFO - 08:35:47:     54%|█████▎    | 65/121 [00:00<00:00, 3775.15 it/sec, obj=4]
INFO - 08:35:47:     55%|█████▍    | 66/121 [00:00<00:00, 3776.49 it/sec, obj=5]
INFO - 08:35:47:     55%|█████▌    | 67/121 [00:00<00:00, 3777.64 it/sec, obj=-4]
INFO - 08:35:47:     56%|█████▌    | 68/121 [00:00<00:00, 3779.05 it/sec, obj=-3]
INFO - 08:35:47:     57%|█████▋    | 69/121 [00:00<00:00, 3781.61 it/sec, obj=-2]
INFO - 08:35:47:     58%|█████▊    | 70/121 [00:00<00:00, 3789.04 it/sec, obj=-1]
INFO - 08:35:47:     59%|█████▊    | 71/121 [00:00<00:00, 3796.67 it/sec, obj=0]
INFO - 08:35:47:     60%|█████▉    | 72/121 [00:00<00:00, 3803.73 it/sec, obj=1]
INFO - 08:35:47:     60%|██████    | 73/121 [00:00<00:00, 3797.96 it/sec, obj=2]
INFO - 08:35:47:     61%|██████    | 74/121 [00:00<00:00, 3798.44 it/sec, obj=3]
INFO - 08:35:47:     62%|██████▏   | 75/121 [00:00<00:00, 3792.64 it/sec, obj=4]
INFO - 08:35:47:     63%|██████▎   | 76/121 [00:00<00:00, 3793.09 it/sec, obj=5]
INFO - 08:35:47:     64%|██████▎   | 77/121 [00:00<00:00, 3794.41 it/sec, obj=6]
INFO - 08:35:47:     64%|██████▍   | 78/121 [00:00<00:00, 3796.28 it/sec, obj=-3]
INFO - 08:35:47:     65%|██████▌   | 79/121 [00:00<00:00, 3795.71 it/sec, obj=-2]
INFO - 08:35:47:     66%|██████▌   | 80/121 [00:00<00:00, 3797.00 it/sec, obj=-1]
INFO - 08:35:47:     67%|██████▋   | 81/121 [00:00<00:00, 3797.91 it/sec, obj=0]
INFO - 08:35:47:     68%|██████▊   | 82/121 [00:00<00:00, 3798.73 it/sec, obj=1]
INFO - 08:35:47:     69%|██████▊   | 83/121 [00:00<00:00, 3799.27 it/sec, obj=2]
INFO - 08:35:47:     69%|██████▉   | 84/121 [00:00<00:00, 3800.17 it/sec, obj=3]
INFO - 08:35:47:     70%|███████   | 85/121 [00:00<00:00, 3801.21 it/sec, obj=4]
INFO - 08:35:47:     71%|███████   | 86/121 [00:00<00:00, 3801.75 it/sec, obj=5]
INFO - 08:35:47:     72%|███████▏  | 87/121 [00:00<00:00, 3802.75 it/sec, obj=6]
INFO - 08:35:47:     73%|███████▎  | 88/121 [00:00<00:00, 3800.71 it/sec, obj=7]
INFO - 08:35:47:     74%|███████▎  | 89/121 [00:00<00:00, 3800.89 it/sec, obj=-2]
INFO - 08:35:47:     74%|███████▍  | 90/121 [00:00<00:00, 3796.70 it/sec, obj=-1]
INFO - 08:35:47:     75%|███████▌  | 91/121 [00:00<00:00, 3796.92 it/sec, obj=0]
INFO - 08:35:47:     76%|███████▌  | 92/121 [00:00<00:00, 3797.77 it/sec, obj=1]
INFO - 08:35:47:     77%|███████▋  | 93/121 [00:00<00:00, 3798.74 it/sec, obj=2]
INFO - 08:35:47:     78%|███████▊  | 94/121 [00:00<00:00, 3800.25 it/sec, obj=3]
INFO - 08:35:47:     79%|███████▊  | 95/121 [00:00<00:00, 3805.83 it/sec, obj=4]
INFO - 08:35:47:     79%|███████▉  | 96/121 [00:00<00:00, 3811.42 it/sec, obj=5]
INFO - 08:35:47:     80%|████████  | 97/121 [00:00<00:00, 3816.83 it/sec, obj=6]
INFO - 08:35:47:     81%|████████  | 98/121 [00:00<00:00, 3822.19 it/sec, obj=7]
INFO - 08:35:47:     82%|████████▏ | 99/121 [00:00<00:00, 3827.55 it/sec, obj=8]
INFO - 08:35:47:     83%|████████▎ | 100/121 [00:00<00:00, 3826.57 it/sec, obj=-1]
INFO - 08:35:47:     83%|████████▎ | 101/121 [00:00<00:00, 3827.27 it/sec, obj=0]
INFO - 08:35:47:     84%|████████▍ | 102/121 [00:00<00:00, 3828.26 it/sec, obj=1]
INFO - 08:35:47:     85%|████████▌ | 103/121 [00:00<00:00, 3828.85 it/sec, obj=2]
INFO - 08:35:47:     86%|████████▌ | 104/121 [00:00<00:00, 3826.32 it/sec, obj=3]
INFO - 08:35:47:     87%|████████▋ | 105/121 [00:00<00:00, 3826.32 it/sec, obj=4]
INFO - 08:35:47:     88%|████████▊ | 106/121 [00:00<00:00, 3821.85 it/sec, obj=5]
INFO - 08:35:47:     88%|████████▊ | 107/121 [00:00<00:00, 3825.91 it/sec, obj=6]
INFO - 08:35:47:     89%|████████▉ | 108/121 [00:00<00:00, 3830.64 it/sec, obj=7]
INFO - 08:35:47:     90%|█████████ | 109/121 [00:00<00:00, 3829.29 it/sec, obj=8]
INFO - 08:35:47:     91%|█████████ | 110/121 [00:00<00:00, 3829.84 it/sec, obj=9]
INFO - 08:35:47:     92%|█████████▏| 111/121 [00:00<00:00, 3830.48 it/sec, obj=0]
INFO - 08:35:47:     93%|█████████▎| 112/121 [00:00<00:00, 3830.95 it/sec, obj=1]
INFO - 08:35:47:     93%|█████████▎| 113/121 [00:00<00:00, 3831.44 it/sec, obj=2]
INFO - 08:35:47:     94%|█████████▍| 114/121 [00:00<00:00, 3832.26 it/sec, obj=3]
INFO - 08:35:47:     95%|█████████▌| 115/121 [00:00<00:00, 3833.31 it/sec, obj=4]
INFO - 08:35:47:     96%|█████████▌| 116/121 [00:00<00:00, 3833.80 it/sec, obj=5]
INFO - 08:35:47:     97%|█████████▋| 117/121 [00:00<00:00, 3834.22 it/sec, obj=6]
INFO - 08:35:47:     98%|█████████▊| 118/121 [00:00<00:00, 3834.69 it/sec, obj=7]
INFO - 08:35:47:     98%|█████████▊| 119/121 [00:00<00:00, 3833.36 it/sec, obj=8]
INFO - 08:35:47:     99%|█████████▉| 120/121 [00:00<00:00, 3836.55 it/sec, obj=9]
INFO - 08:35:47:    100%|██████████| 121/121 [00:00<00:00, 3840.24 it/sec, obj=10]
INFO - 08:35:47: Optimization result:
INFO - 08:35:47:    Optimizer info:
INFO - 08:35:47:       Status: None
INFO - 08:35:47:       Message: None
INFO - 08:35:47:       Number of calls to the objective function by the optimizer: 121
INFO - 08:35:47:    Solution:
INFO - 08:35:47:       Objective: -10.0
INFO - 08:35:47:       Design space:
INFO - 08:35:47:          +------+-------------+-------+-------------+---------+
INFO - 08:35:47:          | Name | Lower bound | Value | Upper bound | Type    |
INFO - 08:35:47:          +------+-------------+-------+-------------+---------+
INFO - 08:35:47:          | x[0] |      -5     |   -5  |      5      | integer |
INFO - 08:35:47:          | x[1] |      -5     |   -5  |      5      | integer |
INFO - 08:35:47:          +------+-------------+-------+-------------+---------+
Optimization result:
  • Design variables: [-5. -5.]
  • Objective function: -10.0
  • Feasible solution: True


Post-process the results#

execute_post(
    problem,
    post_name="ScatterPlotMatrix",
    variable_names=["x", "f"],
    save=False,
    show=True,
)
plot simple opt 3
<gemseo.post.scatter_plot_matrix.ScatterPlotMatrix object at 0x7f2514ea8310>

Note that you can get all the optimization algorithms names:

get_available_opt_algorithms()
['Augmented_Lagrangian_order_0', 'Augmented_Lagrangian_order_1', 'MNBI', 'MultiStart', 'NLOPT_MMA', 'NLOPT_COBYLA', 'NLOPT_SLSQP', 'NLOPT_BOBYQA', 'NLOPT_BFGS', 'NLOPT_NEWUOA', 'DUAL_ANNEALING', 'SHGO', 'DIFFERENTIAL_EVOLUTION', 'INTERIOR_POINT', 'DUAL_SIMPLEX', 'Scipy_MILP', 'SLSQP', 'L-BFGS-B', 'TNC', 'NELDER-MEAD']

and all the DOE algorithms names:

get_available_doe_algorithms()
['CustomDOE', 'DiagonalDOE', 'MorrisDOE', 'OATDOE', 'OT_SOBOL', 'OT_RANDOM', 'OT_HASELGROVE', 'OT_REVERSE_HALTON', 'OT_HALTON', 'OT_FAURE', 'OT_MONTE_CARLO', 'OT_FACTORIAL', 'OT_COMPOSITE', 'OT_AXIAL', 'OT_OPT_LHS', 'OT_LHS', 'OT_LHSC', 'OT_FULLFACT', 'OT_SOBOL_INDICES', 'PYDOE_BBDESIGN', 'PYDOE_CCDESIGN', 'PYDOE_FF2N', 'PYDOE_FULLFACT', 'PYDOE_LHS', 'PYDOE_PBDESIGN', 'Halton', 'LHS', 'MC', 'PoissonDisk', 'Sobol']

Total running time of the script: (0 minutes 0.715 seconds)

Gallery generated by Sphinx-Gallery