gemseo.core.derivatives.jacobian_assembly module#
Coupled derivatives calculations.
- class AssembledJacobianOperator(*args, **kwargs)[source]#
Bases:
LinearOperator
Representation of the assembled Jacobian as a SciPy
LinearOperator
.- Parameters:
functions (Iterable[str]) -- The functions to differentiate.
variables (Iterable[str]) -- The differentiation variables.
n_functions (int) -- The number of functions components.
n_variables (int) -- The number of variables components.
get_jacobian_generator (Callable[[Iterable[str], Iterable[str], bool], Iterator[tuple[RealOrComplexArray, JacobianAssembly.JacobianPosition]]]) -- The method to iterate over the Jacobians associated with the provided functions and variables.
is_residual (bool) --
Whether the functions are residuals.
By default it is set to False.
- class CoupledSystem[source]#
Bases:
object
Compute coupled (total) derivatives of a system of residuals.
Use several methods:
direct or adjoint
factorized for multiple RHS
- adjoint_mode(functions, dres_dx, dres_dy_t, dfun_dx, dfun_dy, linear_solver='DEFAULT', use_lu_fact=False, **linear_solver_settings)[source]#
Compute the total derivative Jacobian in adjoint mode.
- Parameters:
functions (Iterable[str]) -- The functions to differentiate.
dres_dx (dok_matrix | LinearOperator) -- The Jacobian of the residuals wrt the design variables.
dres_dy_t (dok_matrix | LinearOperator) -- The Jacobian of the residuals wrt the coupling variables.
dfun_dx (Mapping[str, dok_matrix]) -- The Jacobian of the functions wrt the design variables.
dfun_dy (Mapping[str, dok_matrix]) -- The Jacobian of the functions wrt the coupling variables.
linear_solver (str) --
The name of the linear solver.
By default it is set to "DEFAULT".
use_lu_fact (bool) --
Whether to factorize dres_dy_t once.
By default it is set to False.
**linear_solver_settings (Any) -- The optional parameters.
- Returns:
The Jacobian of total coupled derivatives.
- Return type:
- direct_mode(functions, n_variables, n_couplings, dres_dx, dres_dy, dfun_dx, dfun_dy, linear_solver='DEFAULT', use_lu_fact=False, **linear_solver_settings)[source]#
Compute the total derivative Jacobian in direct mode.
- Parameters:
functions (Iterable[str]) -- The functions to differentiate.
n_variables (int) -- The number of variables.
n_couplings (int) -- The number of couplings.
dres_dx (dok_matrix | LinearOperator) -- The Jacobian of the residuals wrt the design variables.
dres_dy (dok_matrix | LinearOperator) -- The Jacobian of the residuals wrt the coupling variables.
dfun_dx (Mapping[str, dok_matrix]) -- The Jacobian of the functions wrt the design variables.
dfun_dy (Mapping[str, dok_matrix]) -- The Jacobian of the functions wrt the coupling variables.
linear_solver (str) --
The name of the linear solver.
By default it is set to "DEFAULT".
use_lu_fact (bool) --
Whether to factorize dres_dy once.
By default it is set to False.
**linear_solver_settings (Any) -- The optional parameters.
- Returns:
The Jacobian of the total coupled derivatives.
- Return type:
- linear_problem: LinearProblem | None#
The considered linear problem.
- class JacobianAssembly(coupling_structure)[source]#
Bases:
object
Assembly of Jacobians.
Typically, assemble discipline's Jacobians into a system Jacobian.
- Parameters:
coupling_structure (CouplingStructure) -- The CouplingStructure associated disciplines that form the coupled system.
- class DerivationMode(value)#
Bases:
StrEnum
The derivation modes.
- ADJOINT = 'adjoint'#
The adjoint resolution mode for MDAs, solves one system per output.
- AUTO = 'auto'#
Automatic switch between direct, reverse or adjoint depending on data sizes.
- DIRECT = 'direct'#
The direct Jacobian accumulation, chain rule from inputs to outputs, or derivation of an MDA that solves one system per input.
- REVERSE = 'reverse'#
The reverse Jacobian accumulation, chain rule from outputs to inputs.
- class JacobianPosition(row_slice, column_slice, row_index, column_index)[source]#
Bases:
NamedTuple
The position of the discipline's Jacobians within the assembled Jacobian.
Create new instance of JacobianPosition(row_slice, column_slice, row_index, column_index)
- column_index: int#
The column index of the disciplinary Jacobian within the assembled Jacobian when defined blockwise.
- column_slice: slice#
The column slice indicating where to position the disciplinary Jacobian within the assembled Jacobian when defined as an array.
- class JacobianType(value)[source]#
Bases:
StrEnum
The available types for the Jacobian matrix.
- LINEAR_OPERATOR = 'linear_operator'#
Jacobian as a SciPy
LinearOperator
implementing the appropriate method to perform matrix-vector products.
- MATRIX = 'matrix'#
Jacobian matrix in Compressed Sparse Row (CSR) format.
- assemble_jacobian(functions, variables, is_residual=False, jacobian_type=JacobianType.MATRIX)[source]#
Form the Jacobian as a SciPy
LinearOperator
.- Parameters:
functions (Collection[str]) -- The functions to differentiate.
variables (Collection[str]) -- The differentiation variables.
is_residual (bool) --
Whether the functions are residuals.
By default it is set to False.
jacobian_type (JacobianType) --
The type of representation for the Jacobian ∂f/∂v.
By default it is set to "matrix".
- Returns:
The Jacobian ∂f/∂v in the specified type.
- Return type:
csr_matrix | AssembledJacobianOperator
- compute_dimension(names)[source]#
Compute the total number of functions/variables/couplings of the full system.
- compute_newton_step(in_data, couplings, linear_solver='DEFAULT', matrix_type=JacobianType.MATRIX, residuals=None, resolved_residual_names=(), **linear_solver_settings)[source]#
Compute the Newton step for the coupled system of disciplines residuals.
- Parameters:
in_data (Mapping[str, RealArray]) -- The input data.
couplings (Collection[str]) -- The coupling variables.
linear_solver (str) --
The name of the linear solver.
By default it is set to "DEFAULT".
matrix_type (JacobianType) --
The representation of the matrix ∂R/∂y (sparse or linear operator).
By default it is set to "matrix".
residuals (RealOrComplexArray | None) -- The residuals vector, if
None
useresiduals
.resolved_residual_names (Collection[str]) --
The names of residual variables.
By default it is set to ().
**linear_solver_settings (Any) -- The options passed to the linear solver factory.
- Returns:
The Newton step - relax_factor . [∂R/∂y]^-1 . R as an array of steps for which the order is given by the couplings argument. Whether the linear solver converged.
- Return type:
- compute_sizes(functions, variables, couplings, residual_variables=mappingproxy({}))[source]#
Compute the number of scalar functions, variables and couplings.
- Parameters:
functions (Iterable[str]) -- The functions to differentiate.
variables (Iterable[str]) -- The differentiation variables.
couplings (Iterable[str]) -- The coupling variables.
residual_variables (Mapping[str, str]) --
The mapping of residuals of disciplines to their respective state variables.
By default it is set to {}.
- Raises:
ValueError -- When the size of some variables could not be determined.
- Return type:
None
- plot_dependency_jacobian(functions, variables, save=True, show=False, filepath='', markersize=None)[source]#
Plot the Jacobian matrix.
Nonzero elements of the sparse matrix are represented by blue squares.
- Parameters:
functions (Collection[str]) -- The functions to plot.
variables (Collection[str]) -- The variables.
show (bool) --
Whether the plot is displayed.
By default it is set to False.
save (bool) --
Whether the plot is saved in a PDF file.
By default it is set to True.
filepath (str) --
The file name to save to. If empty,
coupled_jacobian.pdf
is used, otherwisecoupled_jacobian_ + filepath + .pdf
.By default it is set to "".
markersize (float | None) -- The size of the markers.
- Returns:
The file name.
- Return type:
- residuals(in_data, var_names)[source]#
Form the matrix of residuals wrt coupling variables.
Given disciplinary explicit calculations Yi(Y0_t,...Yn_t), fill the residual matrix:
[Y0(Y0_t,...Yn_t) - Y0_t] [ ] [Yn(Y0_t,...Yn_t) - Yn_t]
- Parameters:
in_data (StrKeyMapping) -- The values prescribed for the calculation of the residuals (Y0_t,...Yn_t).
var_names (Iterable[str]) -- The names of variables associated with the residuals (R).
- Returns:
The residuals array.
- Return type:
RealOrComplexArray
- set_newton_differentiated_ios(couplings)[source]#
Set the differentiated inputs and outputs for the Newton algorithm.
Also ensures that
JacobianAssembly.sizes
contains the sizes of all the coupling sizes needed for Newton.- Parameters:
couplings (Collection[str]) -- The coupling variables.
- Return type:
None
- total_derivatives(in_data, functions, variables, couplings, linear_solver='DEFAULT', mode=DerivationMode.AUTO, matrix_type=JacobianType.MATRIX, use_lu_fact=False, exec_cache_tol=None, execute=True, residual_variables=mappingproxy({}), **linear_solver_settings)[source]#
Compute the Jacobian of total derivatives of the coupled system.
- Parameters:
in_data (StrKeyMapping) -- The input data dict.
functions (Collection[str]) -- The functions to differentiate.
variables (Collection[str]) -- The differentiation variables.
couplings (Iterable[str]) -- The coupling variables.
linear_solver (str) --
The name of the linear solver.
By default it is set to "DEFAULT".
mode (DerivationMode) --
The linearization mode (auto, direct or adjoint).
By default it is set to "auto".
matrix_type (JacobianType) --
The representation of the matrix ∂R/∂y (sparse or linear operator).
By default it is set to "matrix".
use_lu_fact (bool) --
Whether to factorize dres_dy once, unsupported for linear operator mode.
By default it is set to False.
exec_cache_tol (float | None) -- The discipline cache tolerance to when calling the linearize method. If
None
, no tolerance is set (equivalent to tol=0.0).execute (bool) --
Whether to start by executing the discipline with the input data for which to compute the Jacobian; this allows to ensure that the discipline was executed with the right input data; it can be almost free if the corresponding output data have been stored in the
Discipline.cache
.By default it is set to True.
linear_solver_settings -- The options passed to the linear solver factory.
residual_variables (Mapping[str, str]) --
a mapping of residuals of disciplines to their respective state variables.
By default it is set to {}.
**linear_solver_settings (Any) -- The options passed to the linear solver factory.
- Returns:
The total coupled derivatives.
- Raises:
ValueError -- When the linearization_mode is incorrect.
- Return type:
dict[str, dict[str, RealOrComplexArray]] | dict[Any, dict[Any, None]]
- coupled_system: CoupledSystem#
The coupled derivative system of residuals.
- coupling_structure: CouplingStructure#
The considered coupling structure.
- disciplines: dict[str, Discipline]#
The disciplines, stored using their name.