gemseo.mlearning.regression.algos.moe module#

Mixture of experts for regression.

The mixture of experts (MoE) model expresses an output variable as the weighted sum of the outputs of local regression models, whose weights depend on the input data.

During the learning stage, the input space is divided into \(K\) clusters by a clustering model, then a classification model is built to map the input space to the cluster space, and finally a regression model \(f_k\) is built for the \(k\)-th cluster.

The classification may be either hard, in which case only one of the weights is equal to one, and the rest equal to zero:

\[y = \sum_{k=1}^K I_{C_k}(x) f_k(x),\]

or soft, in which case the weights express the probabilities of belonging to each cluster:

\[y = \sum_{k=1}^K \mathbb{P}(x \in C_k) f_k(x),\]

where \(x\) is the input data, \(y\) is the output data, \(K\) is the number of clusters, \((C_k)_{k=1,\cdots,K}\) are the input spaces associated to the clusters, \(I_{C_k}(x)\) is the indicator of class \(k\), \(\mathbb{P}(x \in C_k)\) is the probability that \(x\) belongs to cluster \(k\) and \(f_k(x)\) is the local regression model on cluster \(k\).

class MOERegressor(data, settings_model=None, **settings)[source]#

Bases: BaseRegressor

Mixture of experts for regression.

Parameters:
  • data (Dataset) -- The learning dataset.

  • settings_model (BaseMLAlgoSettings | None) -- The machine learning algorithm settings as a Pydantic model. If None, use **settings.

  • **settings (Any) -- The machine learning algorithm settings. These arguments are ignored when settings_model is not None.

Raises:

ValueError -- When both the variable and the group it belongs to have a transformer.

DataFormatters#

alias of MOEDataFormatters

Settings#

alias of MOE_Settings

add_classifier_candidate(name, calib_space=None, calib_algo=mappingproxy({}), **option_lists)[source]#

Add a candidate for classification.

Parameters:
  • name (str) -- The name of a classification algorithm.

  • calib_space (DesignSpace | None) -- The space defining the calibration variables.

  • calib_algo (dict[str, str | int]) --

    The name and options of the DOE or optimization algorithm, e.g. {"algo": "fullfact", "n_samples": 10}). If None, do not perform calibration.

    By default it is set to {}.

  • **option_lists (list[MLAlgoSettingsType] | None) -- Parameters for the clustering algorithm candidate. Each parameter has to be enclosed within a list. The list may contain different values to try out for the given parameter, or only one.

Return type:

None

add_clusterer_candidate(name, calib_space=None, calib_algo=mappingproxy({}), **option_lists)[source]#

Add a candidate for clustering.

Parameters:
  • name (str) -- The name of a clustering algorithm.

  • calib_space (DesignSpace | None) -- The space defining the calibration variables.

  • calib_algo (dict[str, str | int]) --

    The name and options of the DOE or optimization algorithm, e.g. {"algo": "fullfact", "n_samples": 10}). If None, do not perform calibration.

    By default it is set to {}.

  • **option_lists (list[MLAlgoSettingsType] | None) -- Parameters for the clustering algorithm candidate. Each parameter has to be enclosed within a list. The list may contain different values to try out for the given parameter, or only one.

Return type:

None

add_regressor_candidate(name, calib_space=None, calib_algo=mappingproxy({}), **option_lists)[source]#

Add a candidate for regression.

Parameters:
  • name (str) -- The name of a regression algorithm.

  • calib_space (DesignSpace | None) -- The space defining the calibration variables.

  • calib_algo (dict[str, str | int]) --

    The name and options of the DOE or optimization algorithm, e.g. {"algo": "fullfact", "n_samples": 10}). If None, do not perform calibration.

    By default it is set to {}.

  • **option_lists (list[MLAlgoSettingsType] | None) -- Parameters for the clustering algorithm candidate. Each parameter has to be enclosed within a list. The list may contain different values to try out for the given parameter, or only one.

Return type:

None

predict_class(input_data)[source]#

Predict classes from input data.

The user can specify these input data either as a NumPy array, e.g. array([1., 2., 3.]) or as a dictionary, e.g. {'a': array([1.]), 'b': array([2., 3.])}.

The output data type will be consistent with the input data type.

Parameters:

input_data (DataType) -- The input data.

Returns:

The predicted classes.

Return type:

int | str | ndarray

predict_local_model(input_data, index)[source]#

Predict output data from input data.

The user can specify these input data either as a NumPy array, e.g. array([1., 2., 3.]) or as a dictionary, e.g. {'a': array([1.]), 'b': array([2., 3.])}.

The output data type will be consistent with the input data type.

Parameters:
Returns:

The predicted output data.

Return type:

ndarray[Any, dtype[floating[Any]]] | Mapping[str, ndarray]

set_classification_measure(measure, **eval_options)[source]#

Set the quality measure for the classification algorithms.

Parameters:
  • measure (BaseMLAlgoQuality) -- The quality measure.

  • **eval_options (EvalOptionType) -- The options for the quality measure.

Return type:

None

set_classifier(classif_algo, **classif_params)[source]#

Set the classification algorithm.

Parameters:
  • classif_algo (str) -- The name of the classification algorithm.

  • **classif_params (MLAlgoSettingsType | None) -- The parameters of the classification algorithm.

Return type:

None

set_clusterer(cluster_algo, **cluster_params)[source]#

Set the clustering algorithm.

Parameters:
  • cluster_algo (str) -- The name of the clustering algorithm.

  • **cluster_params (MLAlgoSettingsType | None) -- The parameters of the clustering algorithm.

Return type:

None

set_clustering_measure(measure, **eval_options)[source]#

Set the quality measure for the clustering algorithms.

Parameters:
  • measure (BaseMLAlgoQuality) -- The quality measure.

  • **eval_options (EvalOptionType) -- The options for the quality measure.

Return type:

None

set_regression_measure(measure, **eval_options)[source]#

Set the quality measure for the regression algorithms.

Parameters:
  • measure (BaseMLAlgoQuality) -- The quality measure.

  • **eval_options (EvalOptionType) -- The options for the quality measure.

Return type:

None

set_regressor(regress_algo, **regress_params)[source]#

Set the regression algorithm.

Parameters:
  • regress_algo (str) -- The name of the regression algorithm.

  • **regress_params (MLAlgoSettingsType | None) -- The parameters of the regression algorithm.

Return type:

None

LABELS: Final[str] = 'labels'#
SHORT_ALGO_NAME: ClassVar[str] = 'MoE'#

The short name of the machine learning algorithm, often an acronym.

Typically used for composite names, e.g. f"{algo.SHORT_ALGO_NAME}_{dataset.name}" or f"{algo.SHORT_ALGO_NAME}_{discipline.name}".

classif_algo: str#

The name of the classification algorithm.

classif_cands: list[MLAlgoType]#

The classification algorithm candidates.

classif_measure: dict[str, str | EvalOptionType]#

The quality measure for the classification algorithms.

classif_params: MLAlgoSettingsType#

The parameters of the classification algorithm.

classifier: BaseClassifier#

The classification algorithm.

cluster_algo: str#

The name of the clustering algorithm.

cluster_cands: list[MLAlgoType]#

The clustering algorithm candidates.

cluster_measure: dict[str, str | EvalOptionType]#

The quality measure for the clustering algorithms.

cluster_params: MLAlgoSettingsType#

The parameters of the clustering algorithm.

clusterer: BaseClusterer#

The clustering algorithm.

hard: bool#

Whether clustering/classification should be hard or soft.

property labels: list[int]#

The cluster labels.

property n_clusters: int#

The number of clusters.

regress_algo: str#

The name of the regression algorithm.

regress_cands: list[MLAlgoType]#

The regression algorithm candidates.

regress_measure: dict[str, str | EvalOptionType]#

The quality measure for the regression algorithms.

regress_models: list[BaseRegressor]#

The regression algorithms.

regress_params: MLAlgoSettingsType#

The parameters of the regression algorithm.