gemseo.mlearning.regression.algos package#
Regressors.
This package includes regression algorithms, a.k.a. regressors.
A regressor aims to find relationships between input and output variables. After being fitted to a learning set, the regression algorithms can predict output values of new input data.
A regression algorithm consists of identifying a function
\(f: \\mathbb{R}^{n_{\\textrm{inputs}}} \\to
\\mathbb{R}^{n_{\\textrm{outputs}}}\).
Given an input point
\(x \\in \\mathbb{R}^{n_{\\textrm{inputs}}}\),
the predict method of the regression algorithm will return
the output point \(y = f(x) \\in \\mathbb{R}^{n_{\\textrm{outputs}}}\).
See supervised
for more information.
Wherever possible, the regression algorithms should also be able to compute the Jacobian matrix of the function it has learned to represent. Thus, given an input point \(x \\in \\mathbb{R}^{n_{\\textrm{inputs}}}\), the Jacobian prediction method of the regression algorithm should return the matrix
Use the RegressorFactory
to access all the available regressors
or derive either the BaseRegressor
class to add a new one.
Submodules#
- gemseo.mlearning.regression.algos.base_random_process_regressor module
- gemseo.mlearning.regression.algos.base_regressor module
- gemseo.mlearning.regression.algos.base_regressor_settings module
- gemseo.mlearning.regression.algos.factory module
- gemseo.mlearning.regression.algos.gpr module
- gemseo.mlearning.regression.algos.gpr_settings module
- gemseo.mlearning.regression.algos.gradient_boosting module
- gemseo.mlearning.regression.algos.gradient_boosting_settings module
- gemseo.mlearning.regression.algos.linreg module
- gemseo.mlearning.regression.algos.linreg_settings module
- gemseo.mlearning.regression.algos.mlp module
- gemseo.mlearning.regression.algos.mlp_settings module
- gemseo.mlearning.regression.algos.moe module
MOERegressor
MOERegressor.DataFormatters
MOERegressor.Settings
MOERegressor.add_classifier_candidate()
MOERegressor.add_clusterer_candidate()
MOERegressor.add_regressor_candidate()
MOERegressor.predict_class()
MOERegressor.predict_local_model()
MOERegressor.set_classification_measure()
MOERegressor.set_classifier()
MOERegressor.set_clusterer()
MOERegressor.set_clustering_measure()
MOERegressor.set_regression_measure()
MOERegressor.set_regressor()
MOERegressor.LABELS
MOERegressor.SHORT_ALGO_NAME
MOERegressor.classif_algo
MOERegressor.classif_cands
MOERegressor.classif_measure
MOERegressor.classif_params
MOERegressor.classifier
MOERegressor.cluster_algo
MOERegressor.cluster_cands
MOERegressor.cluster_measure
MOERegressor.cluster_params
MOERegressor.clusterer
MOERegressor.hard
MOERegressor.labels
MOERegressor.n_clusters
MOERegressor.regress_algo
MOERegressor.regress_cands
MOERegressor.regress_measure
MOERegressor.regress_models
MOERegressor.regress_params
- gemseo.mlearning.regression.algos.moe_settings module
- gemseo.mlearning.regression.algos.ot_gpr module
OTGaussianProcessRegressor
OTGaussianProcessRegressor.Settings
OTGaussianProcessRegressor.compute_samples()
OTGaussianProcessRegressor.predict_std()
OTGaussianProcessRegressor.HMATRIX_ASSEMBLY_EPSILON
OTGaussianProcessRegressor.HMATRIX_RECOMPRESSION_EPSILON
OTGaussianProcessRegressor.LIBRARY
OTGaussianProcessRegressor.MAX_SIZE_FOR_LAPACK
OTGaussianProcessRegressor.SHORT_ALGO_NAME
OTGaussianProcessRegressor.use_hmat
- gemseo.mlearning.regression.algos.ot_gpr_settings module
CovarianceModel
DOEAlgorithmName
DOEAlgorithmName.CustomDOE
DOEAlgorithmName.DiagonalDOE
DOEAlgorithmName.Halton
DOEAlgorithmName.LHS
DOEAlgorithmName.MC
DOEAlgorithmName.MorrisDOE
DOEAlgorithmName.OATDOE
DOEAlgorithmName.OT_AXIAL
DOEAlgorithmName.OT_COMPOSITE
DOEAlgorithmName.OT_FACTORIAL
DOEAlgorithmName.OT_FAURE
DOEAlgorithmName.OT_FULLFACT
DOEAlgorithmName.OT_HALTON
DOEAlgorithmName.OT_HASELGROVE
DOEAlgorithmName.OT_LHS
DOEAlgorithmName.OT_LHSC
DOEAlgorithmName.OT_MONTE_CARLO
DOEAlgorithmName.OT_OPT_LHS
DOEAlgorithmName.OT_RANDOM
DOEAlgorithmName.OT_REVERSE_HALTON
DOEAlgorithmName.OT_SOBOL
DOEAlgorithmName.OT_SOBOL_INDICES
DOEAlgorithmName.PYDOE_BBDESIGN
DOEAlgorithmName.PYDOE_CCDESIGN
DOEAlgorithmName.PYDOE_FF2N
DOEAlgorithmName.PYDOE_FULLFACT
DOEAlgorithmName.PYDOE_LHS
DOEAlgorithmName.PYDOE_PBDESIGN
DOEAlgorithmName.PoissonDisk
DOEAlgorithmName.Sobol
OTGaussianProcessRegressor_Settings
OTGaussianProcessRegressor_Settings.covariance_model
OTGaussianProcessRegressor_Settings.multi_start_algo_name
OTGaussianProcessRegressor_Settings.multi_start_algo_settings
OTGaussianProcessRegressor_Settings.multi_start_n_samples
OTGaussianProcessRegressor_Settings.optimization_space
OTGaussianProcessRegressor_Settings.optimizer
OTGaussianProcessRegressor_Settings.trend
OTGaussianProcessRegressor_Settings.use_hmat
Trend
TNC
- gemseo.mlearning.regression.algos.pce module
- gemseo.mlearning.regression.algos.pce_settings module
CleaningOptions
PCERegressor_Settings
PCERegressor_Settings.cleaning_options
PCERegressor_Settings.degree
PCERegressor_Settings.discipline
PCERegressor_Settings.hyperbolic_parameter
PCERegressor_Settings.n_quadrature_points
PCERegressor_Settings.probability_space
PCERegressor_Settings.use_cleaning
PCERegressor_Settings.use_lars
PCERegressor_Settings.use_quadrature
- gemseo.mlearning.regression.algos.polyreg module
- gemseo.mlearning.regression.algos.polyreg_settings module
- gemseo.mlearning.regression.algos.random_forest module
- gemseo.mlearning.regression.algos.random_forest_settings module
- gemseo.mlearning.regression.algos.rbf module
- Dependence
RBFRegressor
RBFRegressor.RBFDerivatives
RBFRegressor.RBFDerivatives.der_cubic()
RBFRegressor.RBFDerivatives.der_gaussian()
RBFRegressor.RBFDerivatives.der_inverse_multiquadric()
RBFRegressor.RBFDerivatives.der_linear()
RBFRegressor.RBFDerivatives.der_multiquadric()
RBFRegressor.RBFDerivatives.der_quintic()
RBFRegressor.RBFDerivatives.der_thin_plate()
RBFRegressor.RBFDerivatives.TOL
RBFRegressor.Settings
RBFRegressor.EUCLIDEAN
RBFRegressor.LIBRARY
RBFRegressor.SHORT_ALGO_NAME
RBFRegressor.der_function
RBFRegressor.function
RBFRegressor.y_average
- gemseo.mlearning.regression.algos.rbf_settings module
- gemseo.mlearning.regression.algos.regressor_chain module
- gemseo.mlearning.regression.algos.regressor_chain_settings module
- gemseo.mlearning.regression.algos.svm module
- gemseo.mlearning.regression.algos.svm_settings module
- gemseo.mlearning.regression.algos.thin_plate_spline module
- gemseo.mlearning.regression.algos.thin_plate_spline_settings module