gemseo.mlearning.regression.algos.random_forest_settings module#

Settings of the multiLayer perceptron (MLP).

Settings RandomForestRegressor_Settings(*, transformer=None, parameters=None, input_names=(), output_names=(), n_estimators=100, random_state=0)[source]#

Bases: BaseRegressorSettings

The settings of the multiLayer perceptron (MLP).

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:
Return type:

None

n_estimators: PositiveInt = 100#

The number of trees in the forest.

Constraints:
  • gt = 0

random_state: NonNegativeInt | None = 0#

The random state parameter.

If None, use the global random state instance from numpy.random. Creating the model multiple times will produce different results. If int, use a new random number generator seeded by this integer. This will produce the same results.