gemseo.mlearning.regression.algos.random_forest_settings module#
Settings of the multiLayer perceptron (MLP).
- Settings RandomForestRegressor_Settings(*, transformer=None, parameters=None, input_names=(), output_names=(), n_estimators=100, random_state=0)[source]#
Bases:
BaseRegressorSettings
The settings of the multiLayer perceptron (MLP).
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- Return type:
None
- n_estimators: PositiveInt = 100#
The number of trees in the forest.
- Constraints:
gt = 0
- random_state: NonNegativeInt | None = 0#
The random state parameter.
If
None
, use the global random state instance fromnumpy.random
. Creating the model multiple times will produce different results. Ifint
, use a new random number generator seeded by this integer. This will produce the same results.