Create a DOE Scenario

from __future__ import annotations

from gemseo.api import configure_logger
from gemseo.api import create_design_space
from gemseo.api import create_discipline
from gemseo.api import create_scenario
from gemseo.api import get_available_doe_algorithms
from gemseo.api import get_available_post_processings

configure_logger()
<RootLogger root (INFO)>

Let \((P)\) be a simple optimization problem:

\[\begin{split}(P) = \left\{ \begin{aligned} & \underset{x\in\mathbb{N}^2}{\text{minimize}} & & f(x) = x_1 + x_2 \\ & \text{subject to} & & -5 \leq x \leq 5 \end{aligned} \right.\end{split}\]

In this example, we will see how to use GEMSEO to solve this problem \((P)\) by means of a Design Of Experiments (DOE)

Define the discipline

Firstly, by means of the create_discipline() API function, we create an MDODiscipline of AnalyticDiscipline type from a Python function:

expressions = {"y": "x1+x2"}
discipline = create_discipline("AnalyticDiscipline", expressions=expressions)

Now, we want to minimize this MDODiscipline over a design of experiments (DOE).

Define the design space

For that, by means of the create_design_space() API function, we define the DesignSpace \([-5, 5]\times[-5, 5]\) by using its DesignSpace.add_variable() method.

design_space = create_design_space()
design_space.add_variable("x1", l_b=-5, u_b=5, var_type="integer")
design_space.add_variable("x2", l_b=-5, u_b=5, var_type="integer")

Define the DOE scenario

Then, by means of the create_scenario() API function, we define a DOEScenario from the MDODiscipline and the DesignSpace defined above:

scenario = create_scenario(
    discipline, "DisciplinaryOpt", "y", design_space, scenario_type="DOE"
)

Execute the DOE scenario

Lastly, we solve the OptimizationProblem included in the DOEScenario defined above by minimizing the objective function over a design of experiments included in the DesignSpace. Precisely, we choose a full factorial design of size \(11^2\):

scenario.execute({"algo": "fullfact", "n_samples": 11**2})
    INFO - 16:57:56:
    INFO - 16:57:56: *** Start DOEScenario execution ***
    INFO - 16:57:56: DOEScenario
    INFO - 16:57:56:    Disciplines: AnalyticDiscipline
    INFO - 16:57:56:    MDO formulation: DisciplinaryOpt
    INFO - 16:57:56: Optimization problem:
    INFO - 16:57:56:    minimize y(x1, x2)
    INFO - 16:57:56:    with respect to x1, x2
    INFO - 16:57:56:    over the design space:
    INFO - 16:57:56:    +------+-------------+-------+-------------+---------+
    INFO - 16:57:56:    | name | lower_bound | value | upper_bound | type    |
    INFO - 16:57:56:    +------+-------------+-------+-------------+---------+
    INFO - 16:57:56:    | x1   |      -5     |  None |      5      | integer |
    INFO - 16:57:56:    | x2   |      -5     |  None |      5      | integer |
    INFO - 16:57:56:    +------+-------------+-------+-------------+---------+
    INFO - 16:57:56: Solving optimization problem with algorithm fullfact:
    INFO - 16:57:56: ...   0%|          | 0/121 [00:00<?, ?it]
    INFO - 16:57:56: ...   1%|          | 1/121 [00:00<00:00, 380.75 it/sec, obj=-10]
    INFO - 16:57:56: ...   2%|▏         | 2/121 [00:00<00:00, 627.51 it/sec, obj=-9]
    INFO - 16:57:56: ...   2%|▏         | 3/121 [00:00<00:00, 812.32 it/sec, obj=-8]
    INFO - 16:57:56: ...   3%|▎         | 4/121 [00:00<00:00, 955.26 it/sec, obj=-7]
    INFO - 16:57:56: ...   4%|▍         | 5/121 [00:00<00:00, 1056.13 it/sec, obj=-6]
    INFO - 16:57:56: ...   5%|▍         | 6/121 [00:00<00:00, 1130.29 it/sec, obj=-5]
    INFO - 16:57:56: ...   6%|▌         | 7/121 [00:00<00:00, 1185.26 it/sec, obj=-4]
    INFO - 16:57:56: ...   7%|▋         | 8/121 [00:00<00:00, 1248.40 it/sec, obj=-3]
    INFO - 16:57:56: ...   7%|▋         | 9/121 [00:00<00:00, 1304.15 it/sec, obj=-2]
    INFO - 16:57:56: ...   8%|▊         | 10/121 [00:00<00:00, 1352.74 it/sec, obj=-1]
    INFO - 16:57:56: ...   9%|▉         | 11/121 [00:00<00:00, 1395.61 it/sec, obj=0]
    INFO - 16:57:56: ...  10%|▉         | 12/121 [00:00<00:00, 1433.42 it/sec, obj=-9]
    INFO - 16:57:56: ...  11%|█         | 13/121 [00:00<00:00, 1453.75 it/sec, obj=-8]
    INFO - 16:57:56: ...  12%|█▏        | 14/121 [00:00<00:00, 1471.39 it/sec, obj=-7]
    INFO - 16:57:56: ...  12%|█▏        | 15/121 [00:00<00:00, 1488.29 it/sec, obj=-6]
    INFO - 16:57:56: ...  13%|█▎        | 16/121 [00:00<00:00, 1513.61 it/sec, obj=-5]
    INFO - 16:57:56: ...  14%|█▍        | 17/121 [00:00<00:00, 1537.00 it/sec, obj=-4]
    INFO - 16:57:56: ...  15%|█▍        | 18/121 [00:00<00:00, 1558.03 it/sec, obj=-3]
    INFO - 16:57:56: ...  16%|█▌        | 19/121 [00:00<00:00, 1577.65 it/sec, obj=-2]
    INFO - 16:57:56: ...  17%|█▋        | 20/121 [00:00<00:00, 1593.85 it/sec, obj=-1]
    INFO - 16:57:56: ...  17%|█▋        | 21/121 [00:00<00:00, 1598.15 it/sec, obj=0]
    INFO - 16:57:56: ...  18%|█▊        | 22/121 [00:00<00:00, 1604.78 it/sec, obj=1]
    INFO - 16:57:56: ...  19%|█▉        | 23/121 [00:00<00:00, 1612.55 it/sec, obj=-8]
    INFO - 16:57:56: ...  20%|█▉        | 24/121 [00:00<00:00, 1626.41 it/sec, obj=-7]
    INFO - 16:57:56: ...  21%|██        | 25/121 [00:00<00:00, 1639.60 it/sec, obj=-6]
    INFO - 16:57:56: ...  21%|██▏       | 26/121 [00:00<00:00, 1652.00 it/sec, obj=-5]
    INFO - 16:57:56: ...  22%|██▏       | 27/121 [00:00<00:00, 1663.99 it/sec, obj=-4]
    INFO - 16:57:56: ...  23%|██▎       | 28/121 [00:00<00:00, 1669.33 it/sec, obj=-3]
    INFO - 16:57:56: ...  24%|██▍       | 29/121 [00:00<00:00, 1671.77 it/sec, obj=-2]
    INFO - 16:57:56: ...  25%|██▍       | 30/121 [00:00<00:00, 1672.73 it/sec, obj=-1]
    INFO - 16:57:56: ...  26%|██▌       | 31/121 [00:00<00:00, 1681.78 it/sec, obj=0]
    INFO - 16:57:56: ...  26%|██▋       | 32/121 [00:00<00:00, 1691.02 it/sec, obj=1]
    INFO - 16:57:56: ...  27%|██▋       | 33/121 [00:00<00:00, 1700.12 it/sec, obj=2]
    INFO - 16:57:56: ...  28%|██▊       | 34/121 [00:00<00:00, 1708.56 it/sec, obj=-7]
    INFO - 16:57:56: ...  29%|██▉       | 35/121 [00:00<00:00, 1716.50 it/sec, obj=-6]
    INFO - 16:57:56: ...  30%|██▉       | 36/121 [00:00<00:00, 1716.81 it/sec, obj=-5]
    INFO - 16:57:56: ...  31%|███       | 37/121 [00:00<00:00, 1717.78 it/sec, obj=-4]
    INFO - 16:57:56: ...  31%|███▏      | 38/121 [00:00<00:00, 1717.44 it/sec, obj=-3]
    INFO - 16:57:56: ...  32%|███▏      | 39/121 [00:00<00:00, 1723.90 it/sec, obj=-2]
    INFO - 16:57:56: ...  33%|███▎      | 40/121 [00:00<00:00, 1730.38 it/sec, obj=-1]
    INFO - 16:57:56: ...  34%|███▍      | 41/121 [00:00<00:00, 1736.74 it/sec, obj=0]
    INFO - 16:57:56: ...  35%|███▍      | 42/121 [00:00<00:00, 1742.79 it/sec, obj=1]
    INFO - 16:57:56: ...  36%|███▌      | 43/121 [00:00<00:00, 1745.75 it/sec, obj=2]
    INFO - 16:57:56: ...  36%|███▋      | 44/121 [00:00<00:00, 1745.81 it/sec, obj=3]
    INFO - 16:57:56: ...  37%|███▋      | 45/121 [00:00<00:00, 1743.46 it/sec, obj=-6]
    INFO - 16:57:56: ...  38%|███▊      | 46/121 [00:00<00:00, 1748.62 it/sec, obj=-5]
    INFO - 16:57:56: ...  39%|███▉      | 47/121 [00:00<00:00, 1753.80 it/sec, obj=-4]
    INFO - 16:57:56: ...  40%|███▉      | 48/121 [00:00<00:00, 1759.05 it/sec, obj=-3]
    INFO - 16:57:56: ...  40%|████      | 49/121 [00:00<00:00, 1764.01 it/sec, obj=-2]
    INFO - 16:57:56: ...  41%|████▏     | 50/121 [00:00<00:00, 1768.96 it/sec, obj=-1]
    INFO - 16:57:56: ...  42%|████▏     | 51/121 [00:00<00:00, 1769.62 it/sec, obj=0]
    INFO - 16:57:56: ...  43%|████▎     | 52/121 [00:00<00:00, 1768.04 it/sec, obj=1]
    INFO - 16:57:56: ...  44%|████▍     | 53/121 [00:00<00:00, 1766.70 it/sec, obj=2]
    INFO - 16:57:56: ...  45%|████▍     | 54/121 [00:00<00:00, 1768.21 it/sec, obj=3]
    INFO - 16:57:56: ...  45%|████▌     | 55/121 [00:00<00:00, 1771.86 it/sec, obj=4]
    INFO - 16:57:56: ...  46%|████▋     | 56/121 [00:00<00:00, 1775.86 it/sec, obj=-5]
    INFO - 16:57:56: ...  47%|████▋     | 57/121 [00:00<00:00, 1780.07 it/sec, obj=-4]
    INFO - 16:57:56: ...  48%|████▊     | 58/121 [00:00<00:00, 1784.14 it/sec, obj=-3]
    INFO - 16:57:56: ...  49%|████▉     | 59/121 [00:00<00:00, 1782.15 it/sec, obj=-2]
    INFO - 16:57:56: ...  50%|████▉     | 60/121 [00:00<00:00, 1781.74 it/sec, obj=-1]
    INFO - 16:57:56: ...  50%|█████     | 61/121 [00:00<00:00, 1782.67 it/sec, obj=0]
    INFO - 16:57:56: ...  51%|█████     | 62/121 [00:00<00:00, 1786.10 it/sec, obj=1]
    INFO - 16:57:56: ...  52%|█████▏    | 63/121 [00:00<00:00, 1788.79 it/sec, obj=2]
    INFO - 16:57:56: ...  53%|█████▎    | 64/121 [00:00<00:00, 1791.90 it/sec, obj=3]
    INFO - 16:57:56: ...  54%|█████▎    | 65/121 [00:00<00:00, 1795.36 it/sec, obj=4]
    INFO - 16:57:56: ...  55%|█████▍    | 66/121 [00:00<00:00, 1795.81 it/sec, obj=5]
    INFO - 16:57:56: ...  55%|█████▌    | 67/121 [00:00<00:00, 1795.00 it/sec, obj=-4]
    INFO - 16:57:56: ...  56%|█████▌    | 68/121 [00:00<00:00, 1793.67 it/sec, obj=-3]
    INFO - 16:57:56: ...  57%|█████▋    | 69/121 [00:00<00:00, 1792.94 it/sec, obj=-2]
    INFO - 16:57:56: ...  58%|█████▊    | 70/121 [00:00<00:00, 1795.54 it/sec, obj=-1]
    INFO - 16:57:56: ...  59%|█████▊    | 71/121 [00:00<00:00, 1798.51 it/sec, obj=0]
    INFO - 16:57:56: ...  60%|█████▉    | 72/121 [00:00<00:00, 1801.38 it/sec, obj=1]
    INFO - 16:57:56: ...  60%|██████    | 73/121 [00:00<00:00, 1803.46 it/sec, obj=2]
    INFO - 16:57:56: ...  61%|██████    | 74/121 [00:00<00:00, 1801.50 it/sec, obj=3]
    INFO - 16:57:56: ...  62%|██████▏   | 75/121 [00:00<00:00, 1800.78 it/sec, obj=4]
    INFO - 16:57:56: ...  63%|██████▎   | 76/121 [00:00<00:00, 1801.19 it/sec, obj=5]
    INFO - 16:57:56: ...  64%|██████▎   | 77/121 [00:00<00:00, 1803.70 it/sec, obj=6]
    INFO - 16:57:56: ...  64%|██████▍   | 78/121 [00:00<00:00, 1806.40 it/sec, obj=-3]
    INFO - 16:57:56: ...  65%|██████▌   | 79/121 [00:00<00:00, 1809.00 it/sec, obj=-2]
    INFO - 16:57:56: ...  66%|██████▌   | 80/121 [00:00<00:00, 1811.70 it/sec, obj=-1]
    INFO - 16:57:56: ...  67%|██████▋   | 81/121 [00:00<00:00, 1812.38 it/sec, obj=0]
    INFO - 16:57:56: ...  68%|██████▊   | 82/121 [00:00<00:00, 1811.56 it/sec, obj=1]
    INFO - 16:57:56: ...  69%|██████▊   | 83/121 [00:00<00:00, 1809.38 it/sec, obj=2]
    INFO - 16:57:56: ...  69%|██████▉   | 84/121 [00:00<00:00, 1811.65 it/sec, obj=3]
    INFO - 16:57:56: ...  70%|███████   | 85/121 [00:00<00:00, 1814.01 it/sec, obj=4]
    INFO - 16:57:56: ...  71%|███████   | 86/121 [00:00<00:00, 1816.37 it/sec, obj=5]
    INFO - 16:57:56: ...  72%|███████▏  | 87/121 [00:00<00:00, 1818.57 it/sec, obj=6]
    INFO - 16:57:56: ...  73%|███████▎  | 88/121 [00:00<00:00, 1820.79 it/sec, obj=7]
    INFO - 16:57:56: ...  74%|███████▎  | 89/121 [00:00<00:00, 1820.14 it/sec, obj=-2]
    INFO - 16:57:56: ...  74%|███████▍  | 90/121 [00:00<00:00, 1819.17 it/sec, obj=-1]
    INFO - 16:57:56: ...  75%|███████▌  | 91/121 [00:00<00:00, 1818.68 it/sec, obj=0]
    INFO - 16:57:56: ...  76%|███████▌  | 92/121 [00:00<00:00, 1820.82 it/sec, obj=1]
    INFO - 16:57:56: ...  77%|███████▋  | 93/121 [00:00<00:00, 1822.80 it/sec, obj=2]
    INFO - 16:57:56: ...  78%|███████▊  | 94/121 [00:00<00:00, 1824.93 it/sec, obj=3]
    INFO - 16:57:56: ...  79%|███████▊  | 95/121 [00:00<00:00, 1826.88 it/sec, obj=4]
    INFO - 16:57:56: ...  79%|███████▉  | 96/121 [00:00<00:00, 1828.84 it/sec, obj=5]
    INFO - 16:57:56: ...  80%|████████  | 97/121 [00:00<00:00, 1827.07 it/sec, obj=6]
    INFO - 16:57:56: ...  81%|████████  | 98/121 [00:00<00:00, 1826.33 it/sec, obj=7]
    INFO - 16:57:56: ...  82%|████████▏ | 99/121 [00:00<00:00, 1826.00 it/sec, obj=8]
    INFO - 16:57:56: ...  83%|████████▎ | 100/121 [00:00<00:00, 1827.75 it/sec, obj=-1]
    INFO - 16:57:56: ...  83%|████████▎ | 101/121 [00:00<00:00, 1829.50 it/sec, obj=0]
    INFO - 16:57:56: ...  84%|████████▍ | 102/121 [00:00<00:00, 1831.33 it/sec, obj=1]
    INFO - 16:57:56: ...  85%|████████▌ | 103/121 [00:00<00:00, 1833.10 it/sec, obj=2]
    INFO - 16:57:56: ...  86%|████████▌ | 104/121 [00:00<00:00, 1833.04 it/sec, obj=3]
    INFO - 16:57:56: ...  87%|████████▋ | 105/121 [00:00<00:00, 1832.11 it/sec, obj=4]
    INFO - 16:57:56: ...  88%|████████▊ | 106/121 [00:00<00:00, 1830.16 it/sec, obj=5]
    INFO - 16:57:56: ...  88%|████████▊ | 107/121 [00:00<00:00, 1831.69 it/sec, obj=6]
    INFO - 16:57:56: ...  89%|████████▉ | 108/121 [00:00<00:00, 1833.35 it/sec, obj=7]
    INFO - 16:57:56: ...  90%|█████████ | 109/121 [00:00<00:00, 1834.96 it/sec, obj=8]
    INFO - 16:57:56: ...  91%|█████████ | 110/121 [00:00<00:00, 1836.64 it/sec, obj=9]
    INFO - 16:57:56: ...  92%|█████████▏| 111/121 [00:00<00:00, 1838.27 it/sec, obj=0]
    INFO - 16:57:56: ...  93%|█████████▎| 112/121 [00:00<00:00, 1837.33 it/sec, obj=1]
    INFO - 16:57:56: ...  93%|█████████▎| 113/121 [00:00<00:00, 1836.41 it/sec, obj=2]
    INFO - 16:57:56: ...  94%|█████████▍| 114/121 [00:00<00:00, 1836.05 it/sec, obj=3]
    INFO - 16:57:56: ...  95%|█████████▌| 115/121 [00:00<00:00, 1837.52 it/sec, obj=4]
    INFO - 16:57:56: ...  96%|█████████▌| 116/121 [00:00<00:00, 1839.13 it/sec, obj=5]
    INFO - 16:57:56: ...  97%|█████████▋| 117/121 [00:00<00:00, 1840.66 it/sec, obj=6]
    INFO - 16:57:56: ...  98%|█████████▊| 118/121 [00:00<00:00, 1842.22 it/sec, obj=7]
    INFO - 16:57:56: ...  98%|█████████▊| 119/121 [00:00<00:00, 1843.40 it/sec, obj=8]
    INFO - 16:57:56: ...  99%|█████████▉| 120/121 [00:00<00:00, 1842.03 it/sec, obj=9]
    INFO - 16:57:56: ... 100%|██████████| 121/121 [00:00<00:00, 1841.32 it/sec, obj=10]
    INFO - 16:57:56: Optimization result:
    INFO - 16:57:56:    Optimizer info:
    INFO - 16:57:56:       Status: None
    INFO - 16:57:56:       Message: None
    INFO - 16:57:56:       Number of calls to the objective function by the optimizer: 121
    INFO - 16:57:56:    Solution:
    INFO - 16:57:56:       Objective: -10.0
    INFO - 16:57:56:       Design space:
    INFO - 16:57:56:       +------+-------------+-------+-------------+---------+
    INFO - 16:57:56:       | name | lower_bound | value | upper_bound | type    |
    INFO - 16:57:56:       +------+-------------+-------+-------------+---------+
    INFO - 16:57:56:       | x1   |      -5     |   -5  |      5      | integer |
    INFO - 16:57:56:       | x2   |      -5     |   -5  |      5      | integer |
    INFO - 16:57:56:       +------+-------------+-------+-------------+---------+
    INFO - 16:57:56: *** End DOEScenario execution (time: 0:00:00.074725) ***

{'eval_jac': False, 'algo': 'fullfact', 'n_samples': 121}

The optimum results can be found in the execution log. It is also possible to extract them by invoking the Scenario.get_optimum() method. It returns a dictionary containing the optimum results for the scenario under consideration:

opt_results = scenario.get_optimum()
print(
    "The solution of P is (x*,f(x*)) = ({}, {})".format(
        opt_results.x_opt, opt_results.f_opt
    ),
)
The solution of P is (x*,f(x*)) = ([-5. -5.], -10.0)

Available DOE algorithms

In order to get the list of available DOE algorithms, use:

algo_list = get_available_doe_algorithms()
print(f"Available algorithms: {algo_list}")
Available algorithms: ['CustomDOE', 'DiagonalDOE', 'OT_SOBOL', 'OT_RANDOM', 'OT_HASELGROVE', 'OT_REVERSE_HALTON', 'OT_HALTON', 'OT_FAURE', 'OT_MONTE_CARLO', 'OT_FACTORIAL', 'OT_COMPOSITE', 'OT_AXIAL', 'OT_OPT_LHS', 'OT_LHS', 'OT_LHSC', 'OT_FULLFACT', 'OT_SOBOL_INDICES', 'fullfact', 'ff2n', 'pbdesign', 'bbdesign', 'ccdesign', 'lhs']

Available post-processing

In order to get the list of available post-processing algorithms, use:

post_list = get_available_post_processings()
print(f"Available algorithms: {post_list}")
Available algorithms: ['BasicHistory', 'Compromise', 'ConstraintsHistory', 'Correlations', 'GradientSensitivity', 'HighTradeOff', 'KMeans', 'MultiObjectiveDiagram', 'ObjConstrHist', 'OptHistoryView', 'ParallelCoordinates', 'ParetoFront', 'Petal', 'QuadApprox', 'Radar', 'RadarChart', 'Robustness', 'SOM', 'ScatterPareto', 'ScatterPlotMatrix', 'VariableInfluence']

You can also look at the examples:

Total running time of the script: ( 0 minutes 0.091 seconds)

Gallery generated by Sphinx-Gallery