gemseo.mlearning.regression.algos.ot_gpr module#
Gaussian process regression.
- class OTGaussianProcessRegressor(data, settings_model=None, **settings)[source]#
Bases:
BaseRandomProcessRegressor
Gaussian process regression.
- Parameters:
data (Dataset) -- The learning dataset.
settings_model (BaseMLAlgoSettings | None) -- The machine learning algorithm settings as a Pydantic model. If
None
, use**settings
.**settings (Any) -- The machine learning algorithm settings. These arguments are ignored when
settings_model
is notNone
.
- Raises:
ValueError -- When both the variable and the group it belongs to have a transformer.
- Settings#
alias of
OTGaussianProcessRegressor_Settings
- compute_samples(input_data, n_samples, seed=None)[source]#
Sample a random vector from the conditioned Gaussian process.
- Parameters:
- Returns:
The output samples shaped as
(M, N, p)
wherep
is the output dimension.- Return type:
NumberArray
- predict_std(input_data)[source]#
Predict the standard deviation from input data.
- Parameters:
input_data (DataType) -- The input data with shape (n_samples, n_inputs).
- Returns:
The output data with shape (n_samples, n_outputs).
- Return type:
output_data
- HMATRIX_ASSEMBLY_EPSILON: ClassVar[float] = 1e-05#
The epsilon for the assembly of the H-matrix.
Used when use_hmat is True.
- HMATRIX_RECOMPRESSION_EPSILON: ClassVar[float] = 0.0001#
The epsilon for the recompression of the H-matrix.
Used when use_hmat is True.
- LIBRARY: ClassVar[str] = 'OpenTURNS'#
The name of the library of the wrapped machine learning algorithm.
- MAX_SIZE_FOR_LAPACK: ClassVar[int] = 100#
The maximum size of the learning dataset to use LAPACK as linear algebra library.
Use HMAT otherwise.