gemseo.mlearning.regression.algos.ot_gpr_settings module#

Settings of the Gaussian process regressor from OpenTURNS.

class CovarianceModel(value)[source]#

Bases: StrEnum

The name of a covariance model.

ABSOLUTE_EXPONENTIAL = 'AbsoluteExponential'#

The absolute exponential kernel.

EXPONENTIAL = 'Exponential'#

The exponential kernel.

MATERN12 = 'Matern12'#

The Matérn 1/2 kernel.

MATERN32 = 'Matern32'#

The Matérn 3/2 kernel.

MATERN52 = 'Matern52'#

The Matérn 5/2 kernel.

SQUARED_EXPONENTIAL = 'SquaredExponential'#

The squared exponential kernel.

class DOEAlgorithmName(value)#

Bases: StrEnum

The name of a DOE algorithm.

CustomDOE = 'CustomDOE'#
DiagonalDOE = 'DiagonalDOE'#
Halton = 'Halton'#
LHS = 'LHS'#
MC = 'MC'#
MorrisDOE = 'MorrisDOE'#
OATDOE = 'OATDOE'#
OT_AXIAL = 'OT_AXIAL'#
OT_COMPOSITE = 'OT_COMPOSITE'#
OT_FACTORIAL = 'OT_FACTORIAL'#
OT_FAURE = 'OT_FAURE'#
OT_FULLFACT = 'OT_FULLFACT'#
OT_HALTON = 'OT_HALTON'#
OT_HASELGROVE = 'OT_HASELGROVE'#
OT_LHS = 'OT_LHS'#
OT_LHSC = 'OT_LHSC'#
OT_MONTE_CARLO = 'OT_MONTE_CARLO'#
OT_OPT_LHS = 'OT_OPT_LHS'#
OT_RANDOM = 'OT_RANDOM'#
OT_REVERSE_HALTON = 'OT_REVERSE_HALTON'#
OT_SOBOL = 'OT_SOBOL'#
OT_SOBOL_INDICES = 'OT_SOBOL_INDICES'#
PYDOE_BBDESIGN = 'PYDOE_BBDESIGN'#
PYDOE_CCDESIGN = 'PYDOE_CCDESIGN'#
PYDOE_FF2N = 'PYDOE_FF2N'#
PYDOE_FULLFACT = 'PYDOE_FULLFACT'#
PYDOE_LHS = 'PYDOE_LHS'#
PYDOE_PBDESIGN = 'PYDOE_PBDESIGN'#
PoissonDisk = 'PoissonDisk'#
Sobol = 'Sobol'#
Settings OTGaussianProcessRegressor_Settings(*, transformer=None, parameters=None, input_names=(), output_names=(), use_hmat=None, trend=Trend.CONSTANT, optimizer=class=TNC class=OptimizationAlgorithmImplementation problem=class=OptimizationProblem implementation=class=OptimizationProblemImplementation objective=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[] evaluationImplementation=class=NoEvaluation name=Unnamed gradientImplementation=class=NoGradient name=Unnamed hessianImplementation=class=NoHessian name=Unnamed equality constraint=none inequality constraint=none bounds=none minimization=true dimension=0 startingPoint=class=Point name=Unnamed dimension=0 values=[] maximumIterationNumber=100 maximumCallsNumber=1000 maximumAbsoluteError=1e-05 maximumRelativeError=1e-05 maximumResidualError=1e-05 maximumConstraintError=1e-05 scale=class=Point name=Unnamed dimension=0 values=[] offset=class=Point name=Unnamed dimension=0 values=[] maxCGit=50 eta=0.25 stepmx=10 accuracy=0.0001 fmin=1 rescale=1.3, optimization_space=None, covariance_model=CovarianceModel.MATERN52, multi_start_n_samples=10, multi_start_algo_name=DOEAlgorithmName.OT_OPT_LHS, multi_start_algo_settings=None)[source]#

Bases: BaseRegressorSettings

The settings of the Gaussian process regressor from OpenTURNS.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:
  • transformer (Mapping[str, Any])

  • parameters (Mapping[str, Any])

  • input_names (Sequence[str]) --

    By default it is set to ().

  • output_names (Sequence[str]) --

    By default it is set to ().

  • use_hmat (bool | None)

  • trend (Trend) --

    By default it is set to "constant".

  • optimizer (OptimizationAlgorithmImplementation) --

    By default it is set to class=TNC class=OptimizationAlgorithmImplementation problem=class=OptimizationProblem implementation=class=OptimizationProblemImplementation objective=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[] evaluationImplementation=class=NoEvaluation name=Unnamed gradientImplementation=class=NoGradient name=Unnamed hessianImplementation=class=NoHessian name=Unnamed equality constraint=none inequality constraint=none bounds=none minimization=true dimension=0 startingPoint=class=Point name=Unnamed dimension=0 values=[] maximumIterationNumber=100 maximumCallsNumber=1000 maximumAbsoluteError=1e-05 maximumRelativeError=1e-05 maximumResidualError=1e-05 maximumConstraintError=1e-05 scale=class=Point name=Unnamed dimension=0 values=[] offset=class=Point name=Unnamed dimension=0 values=[] maxCGit=50 eta=0.25 stepmx=10 accuracy=0.0001 fmin=1 rescale=1.3.

  • optimization_space (DesignSpace | None)

  • covariance_model (Sequence[CovarianceModelImplementation | type[CovarianceModelImplementation] | CovarianceModel] | CovarianceModelImplementation | type[CovarianceModelImplementation] | CovarianceModel) --

    By default it is set to "Matern52".

  • multi_start_n_samples (Annotated[int, Ge(ge=0)]) --

    By default it is set to 10.

  • multi_start_algo_name (DOEAlgorithmName) --

    By default it is set to "OT_OPT_LHS".

  • multi_start_algo_settings (Mapping[str, Any])

Return type:

None

covariance_model: Sequence[CovarianceModelType] | CovarianceModelType = CovarianceModel.MATERN52#

The covariance model of the Gaussian process.

Either an OpenTURNS covariance model class, an OpenTURNS covariance model class instance, a name of covariance model, or a list of OpenTURNS covariance model classes, OpenTURNS class instances and covariance model names, whose size is equal to the output dimension.

multi_start_algo_name: DOEAlgorithmName = DOEAlgorithmName.OT_OPT_LHS#

The name of the DOE algorithm.

This DOE is used for the multi-start optimization of the covariance model parameters.

multi_start_algo_settings: StrKeyMapping [Optional]#

The settings of the DOE algorithm.

multi_start_n_samples: NonNegativeInt = 10#

The number of starting points of the multi-start optimizer.

This optimizer is used for the covariance model parameters.

Constraints:
  • ge = 0

optimization_space: DesignSpace | None = None#

The covariance model parameter space.

The size of a variable must take into account the size of the output space. If None, the algorithm will use a design space with bounds defined by OpenTURNS.

optimizer: OptimizationAlgorithmImplementation = class=TNC class=OptimizationAlgorithmImplementation problem=class=OptimizationProblem implementation=class=OptimizationProblemImplementation objective=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[] evaluationImplementation=class=NoEvaluation name=Unnamed gradientImplementation=class=NoGradient name=Unnamed hessianImplementation=class=NoHessian name=Unnamed equality constraint=none inequality constraint=none bounds=none minimization=true dimension=0 startingPoint=class=Point name=Unnamed dimension=0 values=[] maximumIterationNumber=100 maximumCallsNumber=1000 maximumAbsoluteError=1e-05 maximumRelativeError=1e-05 maximumResidualError=1e-05 maximumConstraintError=1e-05 scale=class=Point name=Unnamed dimension=0 values=[] offset=class=Point name=Unnamed dimension=0 values=[] maxCGit=50 eta=0.25 stepmx=10 accuracy=0.0001 fmin=1 rescale=1.3#

The solver used to optimize the covariance model parameters.

trend: Trend = Trend.CONSTANT#

The name of the trend.

use_hmat: bool | None = None#

Whether to use the HMAT or LAPACK as linear algebra method.

If None, use HMAT when the learning size is greater than MAX_SIZE_FOR_LAPACK.

class Trend(value)[source]#

Bases: StrEnum

The name of a trend.

CONSTANT = 'constant'#
LINEAR = 'linear'#
QUADRATIC = 'quadratic'#
TNC: Final[TNC] = class=TNC class=OptimizationAlgorithmImplementation problem=class=OptimizationProblem implementation=class=OptimizationProblemImplementation objective=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[] evaluationImplementation=class=NoEvaluation name=Unnamed gradientImplementation=class=NoGradient name=Unnamed hessianImplementation=class=NoHessian name=Unnamed equality constraint=none inequality constraint=none bounds=none minimization=true dimension=0 startingPoint=class=Point name=Unnamed dimension=0 values=[] maximumIterationNumber=100 maximumCallsNumber=1000 maximumAbsoluteError=1e-05 maximumRelativeError=1e-05 maximumResidualError=1e-05 maximumConstraintError=1e-05 scale=class=Point name=Unnamed dimension=0 values=[] offset=class=Point name=Unnamed dimension=0 values=[] maxCGit=50 eta=0.25 stepmx=10 accuracy=0.0001 fmin=1 rescale=1.3[source]#

The TNC algorithm.