gemseo.mlearning.regression.algos.ot_gpr_settings module#
Settings of the Gaussian process regressor from OpenTURNS.
- class CovarianceModel(value)[source]#
Bases:
StrEnum
The name of a covariance model.
- ABSOLUTE_EXPONENTIAL = 'AbsoluteExponential'#
The absolute exponential kernel.
- EXPONENTIAL = 'Exponential'#
The exponential kernel.
- MATERN12 = 'Matern12'#
The Matérn 1/2 kernel.
- MATERN32 = 'Matern32'#
The Matérn 3/2 kernel.
- MATERN52 = 'Matern52'#
The Matérn 5/2 kernel.
- SQUARED_EXPONENTIAL = 'SquaredExponential'#
The squared exponential kernel.
- class DOEAlgorithmName(value)#
Bases:
StrEnum
The name of a DOE algorithm.
- CustomDOE = 'CustomDOE'#
- DiagonalDOE = 'DiagonalDOE'#
- Halton = 'Halton'#
- LHS = 'LHS'#
- MC = 'MC'#
- MorrisDOE = 'MorrisDOE'#
- OATDOE = 'OATDOE'#
- OT_AXIAL = 'OT_AXIAL'#
- OT_COMPOSITE = 'OT_COMPOSITE'#
- OT_FACTORIAL = 'OT_FACTORIAL'#
- OT_FAURE = 'OT_FAURE'#
- OT_FULLFACT = 'OT_FULLFACT'#
- OT_HALTON = 'OT_HALTON'#
- OT_HASELGROVE = 'OT_HASELGROVE'#
- OT_LHS = 'OT_LHS'#
- OT_LHSC = 'OT_LHSC'#
- OT_MONTE_CARLO = 'OT_MONTE_CARLO'#
- OT_OPT_LHS = 'OT_OPT_LHS'#
- OT_RANDOM = 'OT_RANDOM'#
- OT_REVERSE_HALTON = 'OT_REVERSE_HALTON'#
- OT_SOBOL = 'OT_SOBOL'#
- OT_SOBOL_INDICES = 'OT_SOBOL_INDICES'#
- PYDOE_BBDESIGN = 'PYDOE_BBDESIGN'#
- PYDOE_CCDESIGN = 'PYDOE_CCDESIGN'#
- PYDOE_FF2N = 'PYDOE_FF2N'#
- PYDOE_FULLFACT = 'PYDOE_FULLFACT'#
- PYDOE_LHS = 'PYDOE_LHS'#
- PYDOE_PBDESIGN = 'PYDOE_PBDESIGN'#
- PoissonDisk = 'PoissonDisk'#
- Sobol = 'Sobol'#
- Settings OTGaussianProcessRegressor_Settings(*, transformer=None, parameters=None, input_names=(), output_names=(), use_hmat=None, trend=Trend.CONSTANT, optimizer=class=TNC class=OptimizationAlgorithmImplementation problem=class=OptimizationProblem implementation=class=OptimizationProblemImplementation objective=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[] evaluationImplementation=class=NoEvaluation name=Unnamed gradientImplementation=class=NoGradient name=Unnamed hessianImplementation=class=NoHessian name=Unnamed equality constraint=none inequality constraint=none bounds=none minimization=true dimension=0 startingPoint=class=Point name=Unnamed dimension=0 values=[] maximumIterationNumber=100 maximumCallsNumber=1000 maximumAbsoluteError=1e-05 maximumRelativeError=1e-05 maximumResidualError=1e-05 maximumConstraintError=1e-05 scale=class=Point name=Unnamed dimension=0 values=[] offset=class=Point name=Unnamed dimension=0 values=[] maxCGit=50 eta=0.25 stepmx=10 accuracy=0.0001 fmin=1 rescale=1.3, optimization_space=None, covariance_model=CovarianceModel.MATERN52, multi_start_n_samples=10, multi_start_algo_name=DOEAlgorithmName.OT_OPT_LHS, multi_start_algo_settings=None)[source]#
Bases:
BaseRegressorSettings
The settings of the Gaussian process regressor from OpenTURNS.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
input_names (Sequence[str]) --
By default it is set to ().
output_names (Sequence[str]) --
By default it is set to ().
use_hmat (bool | None)
trend (Trend) --
By default it is set to "constant".
optimizer (OptimizationAlgorithmImplementation) --
By default it is set to class=TNC class=OptimizationAlgorithmImplementation problem=class=OptimizationProblem implementation=class=OptimizationProblemImplementation objective=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[] evaluationImplementation=class=NoEvaluation name=Unnamed gradientImplementation=class=NoGradient name=Unnamed hessianImplementation=class=NoHessian name=Unnamed equality constraint=none inequality constraint=none bounds=none minimization=true dimension=0 startingPoint=class=Point name=Unnamed dimension=0 values=[] maximumIterationNumber=100 maximumCallsNumber=1000 maximumAbsoluteError=1e-05 maximumRelativeError=1e-05 maximumResidualError=1e-05 maximumConstraintError=1e-05 scale=class=Point name=Unnamed dimension=0 values=[] offset=class=Point name=Unnamed dimension=0 values=[] maxCGit=50 eta=0.25 stepmx=10 accuracy=0.0001 fmin=1 rescale=1.3.
optimization_space (DesignSpace | None)
covariance_model (Sequence[CovarianceModelImplementation | type[CovarianceModelImplementation] | CovarianceModel] | CovarianceModelImplementation | type[CovarianceModelImplementation] | CovarianceModel) --
By default it is set to "Matern52".
multi_start_n_samples (Annotated[int, Ge(ge=0)]) --
By default it is set to 10.
multi_start_algo_name (DOEAlgorithmName) --
By default it is set to "OT_OPT_LHS".
- Return type:
None
- covariance_model: Sequence[CovarianceModelType] | CovarianceModelType = CovarianceModel.MATERN52#
The covariance model of the Gaussian process.
Either an OpenTURNS covariance model class, an OpenTURNS covariance model class instance, a name of covariance model, or a list of OpenTURNS covariance model classes, OpenTURNS class instances and covariance model names, whose size is equal to the output dimension.
- multi_start_algo_name: DOEAlgorithmName = DOEAlgorithmName.OT_OPT_LHS#
The name of the DOE algorithm.
This DOE is used for the multi-start optimization of the covariance model parameters.
- multi_start_algo_settings: StrKeyMapping [Optional]#
The settings of the DOE algorithm.
- multi_start_n_samples: NonNegativeInt = 10#
The number of starting points of the multi-start optimizer.
This optimizer is used for the covariance model parameters.
- Constraints:
ge = 0
- optimization_space: DesignSpace | None = None#
The covariance model parameter space.
The size of a variable must take into account the size of the output space. If
None
, the algorithm will use a design space with bounds defined by OpenTURNS.
- optimizer: OptimizationAlgorithmImplementation = class=TNC class=OptimizationAlgorithmImplementation problem=class=OptimizationProblem implementation=class=OptimizationProblemImplementation objective=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[] evaluationImplementation=class=NoEvaluation name=Unnamed gradientImplementation=class=NoGradient name=Unnamed hessianImplementation=class=NoHessian name=Unnamed equality constraint=none inequality constraint=none bounds=none minimization=true dimension=0 startingPoint=class=Point name=Unnamed dimension=0 values=[] maximumIterationNumber=100 maximumCallsNumber=1000 maximumAbsoluteError=1e-05 maximumRelativeError=1e-05 maximumResidualError=1e-05 maximumConstraintError=1e-05 scale=class=Point name=Unnamed dimension=0 values=[] offset=class=Point name=Unnamed dimension=0 values=[] maxCGit=50 eta=0.25 stepmx=10 accuracy=0.0001 fmin=1 rescale=1.3#
The solver used to optimize the covariance model parameters.
- use_hmat: bool | None = None#
Whether to use the HMAT or LAPACK as linear algebra method.
If
None
, use HMAT when the learning size is greater thanMAX_SIZE_FOR_LAPACK
.
- class Trend(value)[source]#
Bases:
StrEnum
The name of a trend.
- CONSTANT = 'constant'#
- LINEAR = 'linear'#
- QUADRATIC = 'quadratic'#
- TNC: Final[TNC] = class=TNC class=OptimizationAlgorithmImplementation problem=class=OptimizationProblem implementation=class=OptimizationProblemImplementation objective=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[] evaluationImplementation=class=NoEvaluation name=Unnamed gradientImplementation=class=NoGradient name=Unnamed hessianImplementation=class=NoHessian name=Unnamed equality constraint=none inequality constraint=none bounds=none minimization=true dimension=0 startingPoint=class=Point name=Unnamed dimension=0 values=[] maximumIterationNumber=100 maximumCallsNumber=1000 maximumAbsoluteError=1e-05 maximumRelativeError=1e-05 maximumResidualError=1e-05 maximumConstraintError=1e-05 scale=class=Point name=Unnamed dimension=0 values=[] offset=class=Point name=Unnamed dimension=0 values=[] maxCGit=50 eta=0.25 stepmx=10 accuracy=0.0001 fmin=1 rescale=1.3[source]#
The TNC algorithm.