Note
Go to the end to download the full example code
Objective and constraints history¶
In this example, we illustrate the use of the ObjConstrHist
plot
on the Sobieski’s SSBJ problem.
from __future__ import annotations
from gemseo import configure_logger
from gemseo import create_discipline
from gemseo import create_scenario
from gemseo.problems.sobieski.core.design_space import SobieskiDesignSpace
Import¶
The first step is to import some high-level functions and a method to get the design space.
configure_logger()
<RootLogger root (INFO)>
Description¶
The ObjConstrHist
post-processing
plots the objective history in a line chart
with constraint violation indication by color in the background.
Create disciplines¶
At this point, we instantiate the disciplines of Sobieski’s SSBJ problem: Propulsion, Aerodynamics, Structure and Mission
disciplines = create_discipline([
"SobieskiPropulsion",
"SobieskiAerodynamics",
"SobieskiStructure",
"SobieskiMission",
])
Create design space¶
We also create the SobieskiDesignSpace
.
design_space = SobieskiDesignSpace()
Create and execute scenario¶
The next step is to build an MDO scenario in order to maximize the range, encoded ‘y_4’, with respect to the design parameters, while satisfying the inequality constraints ‘g_1’, ‘g_2’ and ‘g_3’. We can use the MDF formulation, the SLSQP optimization algorithm and a maximum number of iterations equal to 100.
scenario = create_scenario(
disciplines,
"MDF",
"y_4",
design_space,
maximize_objective=True,
)
scenario.set_differentiation_method()
for constraint in ["g_1", "g_2", "g_3"]:
scenario.add_constraint(constraint, constraint_type="ineq")
scenario.execute({"algo": "SLSQP", "max_iter": 10})
INFO - 13:11:47:
INFO - 13:11:47: *** Start MDOScenario execution ***
INFO - 13:11:47: MDOScenario
INFO - 13:11:47: Disciplines: SobieskiAerodynamics SobieskiMission SobieskiPropulsion SobieskiStructure
INFO - 13:11:47: MDO formulation: MDF
INFO - 13:11:47: Optimization problem:
INFO - 13:11:47: minimize -y_4(x_shared, x_1, x_2, x_3)
INFO - 13:11:47: with respect to x_1, x_2, x_3, x_shared
INFO - 13:11:47: subject to constraints:
INFO - 13:11:47: g_1(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:11:47: g_2(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:11:47: g_3(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 13:11:47: over the design space:
INFO - 13:11:47: +-------------+-------------+-------+-------------+-------+
INFO - 13:11:47: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:11:47: +-------------+-------------+-------+-------------+-------+
INFO - 13:11:47: | x_shared[0] | 0.01 | 0.05 | 0.09 | float |
INFO - 13:11:47: | x_shared[1] | 30000 | 45000 | 60000 | float |
INFO - 13:11:47: | x_shared[2] | 1.4 | 1.6 | 1.8 | float |
INFO - 13:11:47: | x_shared[3] | 2.5 | 5.5 | 8.5 | float |
INFO - 13:11:47: | x_shared[4] | 40 | 55 | 70 | float |
INFO - 13:11:47: | x_shared[5] | 500 | 1000 | 1500 | float |
INFO - 13:11:47: | x_1[0] | 0.1 | 0.25 | 0.4 | float |
INFO - 13:11:47: | x_1[1] | 0.75 | 1 | 1.25 | float |
INFO - 13:11:47: | x_2 | 0.75 | 1 | 1.25 | float |
INFO - 13:11:47: | x_3 | 0.1 | 0.5 | 1 | float |
INFO - 13:11:47: +-------------+-------------+-------+-------------+-------+
INFO - 13:11:47: Solving optimization problem with algorithm SLSQP:
INFO - 13:11:48: 10%|█ | 1/10 [00:00<00:00, 10.45 it/sec, obj=-536]
INFO - 13:11:48: 20%|██ | 2/10 [00:00<00:01, 7.29 it/sec, obj=-2.12e+3]
WARNING - 13:11:48: MDAJacobi has reached its maximum number of iterations but the normed residual 2.338273970736908e-06 is still above the tolerance 1e-06.
INFO - 13:11:48: 30%|███ | 3/10 [00:00<00:01, 6.09 it/sec, obj=-3.56e+3]
INFO - 13:11:48: 40%|████ | 4/10 [00:00<00:01, 5.80 it/sec, obj=-3.96e+3]
INFO - 13:11:48: 50%|█████ | 5/10 [00:00<00:00, 5.62 it/sec, obj=-3.96e+3]
INFO - 13:11:48: Optimization result:
INFO - 13:11:48: Optimizer info:
INFO - 13:11:48: Status: 8
INFO - 13:11:48: Message: Positive directional derivative for linesearch
INFO - 13:11:48: Number of calls to the objective function by the optimizer: 6
INFO - 13:11:48: Solution:
INFO - 13:11:48: The solution is feasible.
INFO - 13:11:48: Objective: -3963.403105287515
INFO - 13:11:48: Standardized constraints:
INFO - 13:11:48: g_1 = [-0.01806054 -0.03334606 -0.04424918 -0.05183437 -0.05732588 -0.13720864
INFO - 13:11:48: -0.10279136]
INFO - 13:11:48: g_2 = 3.1658077606078194e-06
INFO - 13:11:48: g_3 = [-7.67177346e-01 -2.32822654e-01 -5.57051011e-06 -1.83255000e-01]
INFO - 13:11:48: Design space:
INFO - 13:11:48: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:11:48: | Name | Lower bound | Value | Upper bound | Type |
INFO - 13:11:48: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:11:48: | x_shared[0] | 0.01 | 0.06000079145194018 | 0.09 | float |
INFO - 13:11:48: | x_shared[1] | 30000 | 60000 | 60000 | float |
INFO - 13:11:48: | x_shared[2] | 1.4 | 1.4 | 1.8 | float |
INFO - 13:11:48: | x_shared[3] | 2.5 | 2.5 | 8.5 | float |
INFO - 13:11:48: | x_shared[4] | 40 | 70 | 70 | float |
INFO - 13:11:48: | x_shared[5] | 500 | 1500 | 1500 | float |
INFO - 13:11:48: | x_1[0] | 0.1 | 0.3999999322608766 | 0.4 | float |
INFO - 13:11:48: | x_1[1] | 0.75 | 0.75 | 1.25 | float |
INFO - 13:11:48: | x_2 | 0.75 | 0.75 | 1.25 | float |
INFO - 13:11:48: | x_3 | 0.1 | 0.1562438752833519 | 1 | float |
INFO - 13:11:48: +-------------+-------------+---------------------+-------------+-------+
INFO - 13:11:48: *** End MDOScenario execution (time: 0:00:01.019762) ***
{'max_iter': 10, 'algo': 'SLSQP'}
Post-process scenario¶
Lastly, we post-process the scenario by means of the ObjConstrHist
plot which plots the constraint functions history in lines charts.
Tip
Each post-processing method requires different inputs and offers a variety
of customization options. Use the high-level function
get_post_processing_options_schema()
to print a table with
the options for any post-processing algorithm.
Or refer to our dedicated page:
Post-processing algorithms.
scenario.post_process("ObjConstrHist", save=False, show=True)
<gemseo.post.obj_constr_hist.ObjConstrHist object at 0x7f6b597f3430>
Total running time of the script: (0 minutes 1.365 seconds)